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FOREWORD

* Abstract

This document is MATHEMATICA's final report under contract

N00014-70-C-0307. It describes the results of our mathematical

research into destroyer-submarine encounters. The work concen-

trated principally on a submarine's approach and penetration into a

destroyer screen. In our r -port, a statistical model is developed,

the utility of such a model for analyzing sea exercises demonstrated,

and the relative success of penetration evaluated for different patrol

patterns, speeds, barrier geometries and so forth.

The approach and penetration model uses an instantaneous sonar

detection rate or db.-min. model. Its advantages over the so-called

cookie-cutter detection model are demonstrated. The results of an

L investigation comparing the db.-min, model with another detection

I model are also discussed. Procedures for fitting the instantaneous

detection rate model to observed exercise data are provided.

* IPositioning models were also developed and are described. As

a submarine approaches a barrier it is faced with a choice between

* delaying penetration to possibly gain a more favorable position or

initiating penetration to reduce exposure and risk of detection. Where

the submarine receives information about destroyer locations, this

report models the situation as a stopping rule problem. Where it

does not, the situation is modeled with dynamic programming.

Finally, results are obtained about the distribution of a transit

point into a barrier under specific assumptions about the destroyer's

patrol pattern and the submarine's choice of a transit point. It is

shown that the distribution is triangular or approximately triangular

in each gap between the destroyers of the screen.
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1 During the course of this research several aspects of destroyer-

submarine encounters have been investigated. The primary work has

been concentrated on three vertically integrated models as illustrated

in the following figure:

I Game Theoretic Model

Iof Encounter Tactics

It-

Statistical Study of

[Destroyer-Submarine Encounters

Instantaneous Probability

L Detection Model

Figure A-1. Encounter Models

At the lowest level is an instantaneous probability detection

model. During the time that a submarine is in the vicinity of a des-

troyer or other sonar receptor, there are continuous transmissions

of sound from the submarine. The task of the sonar equipment and

of the sonar operators is to separate submarine sound from other

noise. The length of exposure at various noise levels determines the

probability of detection. Since the noise level is a continuously vary-

ing phenomenon, it is necessary to use certain concepts of calculus.



Let us define N(t) as the signal excess over background noise

at time t and let us define the instantaneous detection rate X(t) such

j that in a short interval of time from t to t +At, the probability of

detection is approximately X t)At. The value of X(t) is defined

exactly by letting At approach zero. The work on this project has

shown that X(t) may be approximated by A. N(t) + B. N (t). Since N(t)

can be estimated from data about equipment and sound propagation,

the parameters A. and B can also be estimated.

It is thus possible in an encounter in which the relative tracks

of a submarine and a destroyer are known to determine the probability

of detection. This method is much preferred to a "cookie cutter"

model v henever it can be used. In this latter form, the outcome

simly hinges on whether the closest point of approach is within the

rircular area of the "cookie cutter;" thus, no probability is associated

with the transit.

[I Various approaches to instantaneous detection models have been

taken but ours appears to be the first to form a relationship between

signal excess and instantaneous detection rate based on actual encoun-

ters. Recently a similar model*, although without the quadratic term

suggested above, has been used in analyzing SHAREM exercises.

The second model in the series represents the situation in which

a submarine is attempting to penetrate a convoy screen or barrier
i paLrol of destroyers. The patrol patterns of the destroyers and the

approach-penetration pattern of the submarine are simulated under

COMDESDEVGRU2, ltrser076, 3 August 1970, "Analysis of DataJon Destroyer ASW Screening Mission."
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various assumptions. Because of the inherent randomness of the

ship tracks, several runs are simulated for any one case and for

j each run the probability of detection is determined with the first

model. The average of these detection probabilities forms the en-

i counter probability of detection under the specified assumptions.

The following assumptions are made in all cases. The destroy-

ers (generally three are simulated) are all actively pinging and the

I submarine is thus able to hear the destroyer before the destroyer

can hear the submarine. In addition, the submarine can estimate the

bearing, range, and course of the destroyer during this period.

The following assumptions may be varied from case to case.

I Passive sonars may be spread uniformly over the barrier; if they

are, the ratio of passive to active sonars may be specified.

The destroyer's patrol pattern may be chosen from the following

[ three patterns.

(a) Back and forth patrol. The destroyer patrols between[the two end-points of the zonal rnid-line (E-W). The

destr3yer may reverse direction during a leg, as

I determined by drawing a random number. The fre- N

quency of such reversals may be specified. 9 E

< WIDTH >.

D 
S

L H

L Figure A-2. Back and Forth Patrol
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(b) Random segments in random directions within the zone.
The destroyer performs straight line segments within N

the zone as follows: A

WIDTHI S

I
•D

I E
P
TI H

I
t

Figure A-3. Random Patrol

At the start of each leg a direction is chosen randomly
within + 45% of the midline. With some probability the
destroyer may reverse course at the start of each leg;

otherwise it continues until a boundary is reached.

(c) Zig-zag path at 450 to E-W line. The destroyer moves

back and forth along a broken line with each leg at a 450
angle with the midline.

I
- 4-
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r
'Figure A-4. Zig-zag Patrol

I With some probability, the destroyer may reverse course

at the start of each leg.

The submarine's approach and penetration pattern is as follows.

4The submarine approaches from the South and continues its advance

until it detects a destroyer. If none is detected, the submarine passes

straight through. Otherwise upon hearing the destroyer, it may, de-

pending on an assumed boldness factor, attempt a direct penetration

or side-step and attempt to evade the destroyer by penetrating through

a gap. In certain situations it may be assumed that the submarine will

attempt an end run around the screen.

The use of this model produces tables of detection probabilities

under the varied asumptions. The following figure shows a typical

array of results for a few of the different assumptions. A complete

Itable might have twenty or thirty entries in each direction.

-5-L



i
I Destroyer

Submapion Back and Forth Random Zig-Zag

As sumptions

Speed Bold .342 .488 .316
5 kts

-. Normal .538 .515 .538

Speed Bold .609 .691 .649

10kts Normal .896 .841 .783

Figure A-5. Probabilities of Successful Penetration

fThese figures are useful in their own right, particularly in

Ii reviewing specific encounters, either past or planned. However,

the reader may recognize that the assumptions for each side really

represent strategies in a game theoretic sense. Thus, the table of

results can be regarded as representing a game matrix. In the par-

ticular case presented above the submarine's strategy of proceeding

at 10 knots and being neither particularly bold nor cautious dominates

its other strategies. Consequently the game is easily solved and the

46destroyer should employ a zig-zag patrol in response to the sub-

marine's actions.

In general, to distinguish the optimal strategies the game

matrix may be sol,,ed using linear programming techniques,

-6-
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Specific issues have arisen in the mnirse of the re-search that

have received special investigation. These additional topics and

their relationship to the primary models described above are illus-

trated in the following figure:

Game Theoretic Model[of Encounter Tactics

Stopping Rule Analysis

-of Barrier Penetration

Statistical Study of

Destroyer-Submarine Encounters

i Distribution of the

Gap Transit Point

Fitting Detection Models Instantaneous Probability

to Observed Data Detection Model

Il
II

Figure A-6. Encounter and Related Models

The purpose of the stopping rule analysis of barrier penetration

is to determine the optimel behavior for a submarine waiting in a

"holding pattern" to penetrate a destroyer barrier or screen. At some

-7-



1[ risk it can wait in an area outside of the detection range but not close

enough to obtain information about the destroyers' positions and

-j patrol patterns. The question arises as to the circumstances in

which it becomes more advantageous to attempt penetration than to

i gather more information or wait for a potentially better opportunity.

Satisfactory results have been obtained using the theory of stopping

rule analysis; all of the information available to the submarine is

employed to find its optimal penetration policy.

The probability distribution of the barrier transit point is a

collateral result obtained during the study. While not bearing directly

on the other models, it is of interest in its own right; a paper on the

subject has been prepared and submitted to the Naval Logistics

Research Quarterly. In the situation analyzed, destroyers patrol

segments of a barrier or screen which may or may not overlap. The

4submarine is given a chance to pick a gap between the destroyers at

an arbitrary point in time. The resulting distribution of the location

of the chosen transit point is determined. If two destroyers are present,

a triangular distribution results; if three destroyers, an irregular

distribution results which nevertheless resembles a triangular distri-

bution in each gap area.

The purpose of developing methods for fitting the instantaneouslprobability detection model to observed exercise data is to guarantee

that the detection model can truly represent the real world. As

previously described, the detection rate X (t) is given bj A. N(t)+B- N2(t)

I where N(t) is the signal excess and A and B are parameters. We have

developed a maximum likelihood estimation procedure for determing A and B

1 -8-!c



I

I and an approximate procedure for finding a confidence region on A and

B simultaneously. A test for consistency is also developed which

makes it possible to test whether the instantaneous detection model

adequately explains observed variations in first detection time.

The discussion of destroyer-submarine en'ounters including

a description of the statistical study and its application to game

theoretic models is contained in Chapter B. The chapter also reviews

several numerical results which have been obtained with the models.

The analysis of barrier penetration problems is contained in

Chapter C. Following that, in Chapter D, is a combined discussion

of instantaneous probability detection models and of procedures for

fitting detection models to observed data obtained from exercises at

I sea. The last chapter, Chapter E, contains the text of the paper,

"The Distribution of the Transit Point in a Submarine vs. Destroyer

L Game."

Ii

4
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B. DESTROYER-SUBMARINE ENCOUNTERS

1. The Model Scenario

As indicated in the introductory chapter, a statistical model

has been developed to assesb the probability of undetected pene-

tration by a submarine of a dcsLroyer screen or barrier. This is

I accomplished by replicating the expected tracks of the ships under

specific assumptions about tactics and encounter conditions. Using

these tracks and the instantaneous probability detection model, the

Lsubmarine's probability of survival is determined. Because there

are random elements in such encounters, several replications of
the encounter are used to obtain an average probability of survival.

The Figure B-1 depicts the patrol areas of the defending

destroyers. In each area a destroyer is represented schematically

by a vessel-shaped figure, the vector through the vessel represent-

ing the direction and speed of movement. The submarine cruising

in front of the screen is represented by a similar figure, again with

a vector representing directioei and speed.

The submarine, approaching from the bottom, may attempt

I to proceed directly through the screen, may move toward a gap area

and proceed directly through, or may cruise or lie dead in the water

outside the barrier for a period before attempting a transit. The

choice depends on the information available to the submarine's

commander and upor 'is evaluiation of that information. The des-

troyers are assumed ah',ays to be in an active sonar mode. Thus

the submarine will be able to hear a destroyer at some distance,

-Hl!-
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DSUB, which generally will be much greater than the distance,

RMIN, at which the destroyer has a nonzero probability of detect-

ing the submarine. The information obtained by the submarine when

it is within DSUB of a destroyer allows it to determaine f ,e location,

course, and speed of the destroyer. We have, for the purposes of

i Fthis model, assumed that this is the only source of such information

to the submarine. A detailed discussion of the way the submarine's

response has been modelled is contained in section 3 below on sub-

marine strategies.

The destroyers continually patrol their sectors according to

patterns which usually involve random elements. The instantaneous

probability detection model described in Chapter D is used for model-

ing the destroyers' sonar capabilities. In addition to the destroyers,

a number of passive sonobuoys may be placed throughout the screen.

This tends to discourage submarines from spending long hours in the

information gathering region. Various patterns of sonobuoys may be

assumed but wc have only implemented a uniform type of distribution.

As a logical extension, one might consider a distribution which

increases the likelihood of exposure for a submarine travelling

toward and through gaps. The correct solution of this problem re-

quires the use of game theory.

The detection model used for sonobuoys is the more conven-

tional "cookie-cutter" type in which a submarine is always detected

within range SMIN and never outside that range. The value of SMIN

is a function of U, the submarine speed, in the usual manner. The

13-



I distribution of sonobuoys is used with the detection model to obtain a

probability of detection for a submarine following a particular path at

specified speeds. Because the threat of detection is dispersed, it

is less critical whether an instantaneous probability detection model

is used and we have found it quite satisfactory in this instance to use
I a "~cookie -cutter" model. To accommodate different scenarios, the

number of sonobuoys (expressed as a ratio r to the number of des-

I troyers) is treated as variable. For example, a convoy destroyer

i screen may have no sonobuoys (r = 0) whereas a stationary destroyer

barrier may have many (say, r = 4). The details of sonobuoy deploy-

'' ment are described below in Section 4 on sonobuoy deployment.

In the first chapter and above in this section we have indicated

in a general way the patrol strategies available to the destroyers.

in the following section, we develop this in detail.

14I



r2. Description of Destroyer Strategies

The major deterrinant of a destroyer's strategy is its patrol

pattern. The following three patterns have been chosen as an

approximation to the methods that are or might be used. There is

some redundancy with the text of the first chapter but it is important

to have a complete review here.

(a) Back and forth patrol, The destroyer patrols between

the two end-points of the zonal mid-line (E-W). The

destroyer may reverse direction during a leg, as

determined by drawing a random number. The fre-

quency of such reversals may be specified.

N

W E
WIDTH

S
D
E
P
T

<9 >H

Figure B-2. Back and Forth Patrol

15-
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(b) Random segments in random directions within the zone.

The destroyer performs straight line segments within

the zone as follows: N

WIDTH \V___________<_________ __ > s
I

D
E
P
T
H

Figure B-3. Random Patrol

At the start of each leg a direction is chosen randomly

within ± 457 of the midline. With some probability

the destroyer may reverse course at the start of each
~leg; otherwise it continues until a boundary is reached.

The procedure for selecting each new leg is as follows:

(i) Of the four possible quadrants, the destroyer will

usually tend to keep going in the same E-W direction.

However, he will occasionally reverse E-W

I direction. The choice of upper or lower quadrant

I
- 16 -I



I

is made with equal probability, independentI of the previous direction.

7 1 
(a)

A.(a

I.-
I- 3 4

Usual quadrant choice Occasional quadrant choice

:Figure B-4. Choice of Quadrant

I: (ii) Once the quadrant has been chosen, the angle made

with the E-W line is chosen randomly, from the

uniform distribution on the range [00 , 450 ].

[I This follows a suggestion by Fischer [2]. Paths

which approach more nearly to the N-S direction

.j "waste time" when seeking a submarine, transitting

in the N-S direction. The range of angles chosen
gives a reasonable chance of catching a submarine

Iwhich is lying in wait (or proceeding in an E-W

direction).

1(iii) Once a path is chosen, it is followed until the boundary

of the box is reached. This places obvious restrictions

rn the next choice of quadrant. A procedure in which

L
-17-



j1 path length is chosen randomly (within allowable

limits) was tried, and dropped. It used excessive

I computer time, and contributed little to effective

1 destroyer search.

(c) Zig-zag path at 450 to E-W line. The destroyer moves

[ 1back and forth along a broken line with each leg at a 450

angle with the midline.
N

jWIDTH <-E
>

S

D
E:11/ P
T

" H

1I

LFigure B-5. Zig-zag Patrol

With some probability, the destroyer may reverse course

at the start of each leg.

The parameter used to determine the frequency of random

reversals (or random changes from quadrants 1, 4 to 2, 3 and vice-L versa in case (2) will be called W ("WEIGHT" in the program listing).

-18-
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W = 1 corresponds to no random reversals. Patterns (1) and (3)

are thus completely predictable. Pattern (2) will not be predictable,

because the angle with the E-W line is still chosen randomly, but

the destroyer will proceed regularly from one end of the barrier to

the other. W = . 5 corresponds to 50% reversals. W less than .5

[- is not used, since more frequent reversals than 50-50 would serve

no purpose (a number of runs with W less than . 5 were made to

I-verify this).

1I

t
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3. Description of Submarine Strategies

I The submarine, of course, proceeds due North across the

barrier, if it hears no pings. If it hears only one destroyer, it may

keep going North, or take a sidestep (E or W) until his Northerly

S course can be resumed without danger.

The basic choices for the submarine thus are a) to attempt

transit through the barrier segment that presents itself as the submarine

approaches the barrier, using sidesteps if necessary and maintaining a

constant speed; or b) to seek the end of a destroyer segment ("end-run")

by determining the larger gap between the three destroyers facing the

submarine, proceeding East or West to that gap, and holding to the mid-

Lline of the gap in proceeding North. It may wait dead in the water before

U proceeding.

The optimal choice will depend on the lambda constant for the

destroyer's sonar equipment. For low lambda (poor equipm-at), a

direct transit may be preferable.

If the submarine's speed is relatively slow - in the range 3-10

U! knots - it may be advisable to ignore a destroyer even if it is heard,

provided that the destroyer stays more than the maximum sonar range

away. A fast submarine, on the other hand, can afford to take evasive

action whenever the predicted closest point of approach (CPA) is less

than sonar range.

If the submarine has heard, or hears at present, two or more

destroyers, it may attempt a "gap-splitting" strategy. If only two

destroyers are heard, it would initially go for the "unprotected" side

of the nearer one. ["End-run" ] If three are heard, it would split the

-20-



larger gap. We assume that the submarine keeps records of the

Westmost and Eastmost positions of each destroyer heard (and

that it can discriminate between them). The end-run case would

j be converted to gap-split if another destroyer were encountered.

Alternatively, when the submarine hears a second destroyer,

Iit could simply concentrate attention on the closest, or poten-

tially most dangerous one (taking account of the destroyers'

current course), and ignore the others. ("No Split" strategy.)

J The choice between these two alternative types of strategy

will depend on, among other parameters, the spacing between

barrier segments chosen by the destroyers. Their object should

be to present the submarine with equally desirable alternatives,

so that the probability of detection remains constant whichever

strategy is chosen.

We have now specified strategy when two ore more destroyers

have been heard. Let us return to the case where only one is heard,

or when the submarine decides to consider only the most dangerous

one (the latter is called the "no split" case).

Upon detecting a destroyer, the following closest points of

approach (CPA's) are calculated. It is assumed that the submarine

immediately determines the destroyer's course.

- 21 -



I (a) CPA - the resulting CPA if the submarine maintainsgo

I his present course

(b) CPAstop - the CPA that results if the submarine

adopts an Easterly (or Westerly - whichever is better)

course.

Both of these CPA's are continuously monitored.

If the submarine is advancing in a Northerly direction, it uses

the rules:

If CPA go > RMINP, then continue the Northerly course

If CPAgo < RMINP, but CPA > GNGFAC• CPA stop, also

continue Northerly. The value of GNGFAC (Go/No-Go

Factor) is a submarine decision factor which is usually

set to about three quarters.

iOtherwise, adopt the better Easterly or Westerly direction.

If the submarine is in the East-West mode, it uses the rule:

As soon as CPA > RMINP, begin a Northerly course.

i ve We define a parameter RMINP as follows: the submarine maneu-

vers taking sidesteps when necessary so as to keep, if possible, the

predicted CPA with the destroyer greater than the distance RMINP.

Unless his speed is very fast, he will not always be successful.

We have chosen to relate RMINP to RMIN, the destroyer's sonar

range or maxi-n-vun distance at which it has a positive probability of

2
1 -22Z-



detecting the submarine. This seems reasonable because as sonar is

improved the usual consequence is to enlarge the patrol sectors and,

in general, to scale up all of the distance parameters in the model.!
Thus we define

I RMINP = C C RMIN

I where CC is a constant specified initially and, possibly, modified

during the encounter. Values of CC greater than one are progressively

more cautious while values less than one are progressively more bold.

[ A value of CC equal to zero means the destroyers will be ignored.

Suppose the submarine comes closer to the destroyer, than

RMINP. This is an indication that the value of RMINP chosen originally

was too cautious. In this event, then CC is reduced by a factor a less

than one; thus the submarine becomes increasingly bold. If the destroyer

again approaches within the new RMINP, it is reduced by a again, and so

on, until the sumbarine becomes sufficiently bold to attempt transit

on the next favorable opportunity. This factor a we call the learning

factor. In the principal runs obtained during this study a was set to one-

half. Table VII represents a brief study of the effects due to variation

of a. Further research might profitably analyze the sensitivity of this

number and attempt to relate it to observed behavior. It would be

Iespecially interesting to find wheather ca. and CC are correlated.

The introduction of these two factors is an attempt to assist

the development of a model of a submarine's behavior in this type of

encounter scenario. The factors reflect a commander's initial and

- 23-
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subsequent assessment of Al1 threats which exist if a transit is

not attempted immediately or if he stops during penetration to take

evasive action.

i2
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4. Description of Sonobuoy Strategies

Passive sensors are assumed to have the following character-

istics:

(i) They are distributed randomly over a specified

area; for simplicity, the area used is the

full barrier with the addition of strips along

the North and South edges of width RMIN.

(ii) The mode of detection is cookie-cutter, with radius

R; that is, detection is certain if the submarine ever

[comes within range R of any passive detector.

(iii) The value of R depends on the speed of the

Isubmarine. The formula used is given in

Appendix B-Ill.

The number of passive sensors is expressed as ratio to the

number of active destroyers. This is appropriate since the sonobuoys

are associated with the destroyer sectors and constant ratios imply

constant sector strength. The ratio is denoted by r. If it is assumed

that each destroyer acts simultaneously (and continuously) as a passive

detector, then r must be at least 1. However, values of r = 0,

t I and . 5, are included in our analysis, for completeness, as well

as r = 1., 2., 4., 6.

The probability of surviving detection by passive sensors is

computed, using a simple formula given in Appendix B-Il. This

survival probability is multiplied by the previously obtained survival

probability relating to active sonars.
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I
5. Results of the Model

The value of the present model using the db. -min. concept

of instantaneous probability of detection is shown in the program's

sensitivity to a large number of control rarameters. The simulation

program was also run with a "cookie-cutter" detection model to

contrast the significantly greater sophistication available with the

db-min detection model. Optimal strategic choices change as the

condition of the destroyers equipment or the background noise

varies. Such differences can not be simulated in any acceptable

manner using cookie-cutter detection concepts.

Ii Since the model incorporates a large number of parameters,

complete testing under all combinations of parametric variation was

[ computationally unfeasible. Instead, situational parameters, (e. g.,

barrier geometery) were set equal to standard values and the

" strategic parameters (e. g., submarine speed and destroyer patrol

pattern) were varied. The effect of variation in the situational pa-

raineters was investigated by allowing various subsets of the pa-

ge rameters to vary singly for a limited number of strategy choices.

Careful examination of the results of the simulation runs gives

Igreat insight into the complex interaction between strategic and

situational parameters.

The results in the first five sets of tables were obtained hold:

ing the following situational parameters fixed at the values indicated:

1 Z6-
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RMIN = 10. = Destroyer maximum sonar range

DSUB = 20. = Submarine maximum sonar range

1 BARWID = 20. = Half width of destroyer patrol box

BARDEP = . = Half depth of destroyer patrol box

rP' HORFCT = 2.5 = Horizontal spacing factor between destroyers

VERFCT = 0. = Vertical spacing factor between destroyers

DESTNO = 3 = Number of destroyers

RDFAC = 0.5 = Reduction factor for RMINP

GNGFAC = 0.75 = Go/No-go decision factor

I-I V = 17. = Destroyer speed (kts.)

Game matrix entries were derived only as necessary to locate the

solution strategies. The following four basic and illustrative game

matrices will be discussed in detail:

Table I-a: Probability of undetected barrier transit under
"average" equipment or sea state conditions with
no passive sensors deployed (X = 0. 1 db - min, r = 0).

Table II-a: Probability of undetected barrier transit under "good"
equipment or sea state conditions with no passive
sensors deployed (X = 1.0 db - min, r = 0).

Table III-a: Probability of undetected barrier transit under "average"
equipment or sea state conditions with four passive
sensors deployed per active 3onar (X = 0. 1 db - min, r = 4).

Table IV-a: Probability of undetected barrier transit under "good"
equipment or sea statp conditions with four passive
sentors deployed per active sonar (X = 1. 0 db - min, r = 4).

Tables I-b, II-b, III-b, IV-b tabulate the game theoretic solutions for

th,* correponding game matrices as detailed above. The derivation

- 7 -
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of strategy solutions requires the following reasonable premises:I
i) The destroyer knows the maximum submarine speed

J ii) The destroyer chooses a patrol pattern and a course
reversal frequency

iii) The submarine knows the choice of patrol pattern and
course reversal rate made by the destroyer

iv) The submarine chooses a speed (less than or equal to
his maximum speed) and a caution factor.

These choices arc denoted by:

IZIG = destroyer patrol pattern

WEIGHT = destroyer course reversal frequency
(WEIGHT = 0. 5 implies 50% course reversal

'i 0. 7 implies 30/ course reversal
1.0 implies no course reversal)

U = submarine speed

CC = submarine caution factor.

-The results of the simulation runs when the program was set to use

a cookie-cutter detection model are exhibited in Table V-a. Table V-b

lists the corresponding optimal strategies based upon this model of

detection. Comparis ns between Tables I through IV and Table V

demonstrate clearly and effectively the importance of the db - min

or instantaneous probability of detection concept.

The results displayed in Tables VI through X were derived

from the model by holding the strategic parameters fixed at one of

I two sets of values. Tests were made to demonstrate the sensitivity

of the simulation program to a number of critical and/or interesting

parameters.

I -28 -
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Table VI presents the effect of variation in DSUB, the sub-

marine's maximum sonar range. The next two tables (VII and VIII)

Ftabulate the results of an examinatiation into two of the factors which

govern the submarine's movement through the patrol barrier. Table VII

displays the results of changes in RDFAC, the factor by which the de-

sired avoidance distance (RMINP) is reduced whenever the destroyer's

motion violates this bound. In Table VIII are listed the simulation

results due to variation of the parameter GNGFAG; this parameter

controls the submarine's decision whetner to go North or to wait

(see Appendix B-I). The geometric aspects of the barrier patrol

box are the subject of Tables IX and X. Table IX displays the effect
I that BARDEP, the half depth of the patrol box, has on the probability

of undetected transit. The results of variation in the gap size are

- summarized in Table X.

L- Probability entries in all the tables of this section denote

the probability that the submarine will achieve undetected transit

of the patrol barrier starting from a distance RMIN in front of the

destroyer patrol box and ending at a distance of RMIN past the patrol

box. It must be emphasized that the results are subject to rather

large standard deviations. For some probabilitic entries the con-

fidence interval at the 90% level were derived. Where calculated,

these are displayed in the form . 0x. The conclusions drawn from

the data are therefore tentative and should be subjected to further

investigation. However, the preliminary inferences of this section

Lare believed to be indicative of the correct evaluation of the ASW problem.

1. -29-
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I Submarine strategies are denoted by

i UMAX = maximum submarine speed in knots

UopT optimal submarine speed in knots

CC = submarine caution strategy, where increasing

values represent increasing caution.

Destroyer strategies are denoted by

-L IZIG = destroyer patrol pattern

WEIGHT = destroyer frequency of course reversal, where
increased course reversal is reflected in lower
values of this parameter.

[] All tables will be found at the end of this section beginning on page 44.

Tables I-a and I-b

1. The entries in Table I-a were derived assuming "average"

equipment and sea states witi no passive sensors deployed. The

solutions to this game matrix are presented in Table I-b. The

Li table serves as a good illustration of the sensitive nature of the

ASW problem. As the maximum submarine speed varies no overallSstructure is developed in the optimal strategy choices. Only when

the submarine is capable of speeds over 10 knots does any pattern

develop: the destroyer should choose the method of random patrol

and r...erse course with frequency 0. 5. This strategy may be inter-

preted to mean that for relatively high submarine speeds, the destroyer

patrol should be as unpredicable as possible. The sabmarine's pro-

bability of achieving undetected penetration through the barrier are

-30-



so high that the destroyer's best strategy is to use chance to trap

the submarine within sonar range.

Tables II-a and II-b

F In these tables "good" equipment and/or sea states are

assumed. Again no passive sonars are deployed. Of particular

interest are the solution strategies shown in Table II-b. The

choices display significant differences when compared to Table I-b.

These can be attributed to the improved value of X. For low values

of UMAX the probability of no detection under optimal strategy

choices is considerably reduced:

UMAX Pr (no dtection) Pr (no detection) Differences

>X, = 1.0 db - hrs. L = 0.1 db - hrs.

3 .010 .295 .285

5 .118 .511 .393

7 .254 .621 .367

10 .514 .809 .295

When the destroyers face a submarine capable of higher speeds the

effective differential of better equipment and/or sea states falls

off rapidly:

UMAX Pr (no detection) Pr (no detection) Differences
U=1.0 db- hrs. X=0. 1 db - hrs.

13 .677 .865 .188

15 .813 .921 .108

17 .843 .921 .078
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JThe game solutions show little regularity except for CC, the caution

factor, which is generally equal to 1. This implies the submarine

j should neither be very bold nor very cautious. The optimal frequency

of course reversals (WEIGHT) tends to indicate that trapping the

submarine is a preferred strategic choice at higher submarine speeds.

By trapping we mean that the submarine, having begun a transit

attempt as the destroyers moved away, is caught when one of them

unexpectedly reverses course. The best speed for the submarine

is in every case equal to the maximum allowable. The probable

Iinterpretation of this result is that the submarine does best to transit

the barrier as quickly as possible; the submarine thereby reduces

the possible time it may be exposed to the destroyers' sonar to a

ji minimum, not worrying about the extra noise generated at high

speed.ti
Tables III-a and III-b

h The data in these tables are the result of running the simul-

if ation program under the hypothesis of "average" equipment and/or

sea state. However passive sonar detectors were simulated in

addition. A ratio of four passive sensors per active sensor was

Li used.

The addition of passive detectors had its most significant

. effect at average and high submarine speeds (assum,ing. optimal.

strategies are chosen):

3
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S MA X  Pr (ne detection) Pr (no detection) with Difference
UMX with passive detectors no passive detectors

17 .304 .921 .617

15 .304 .921 .617

13 .304 .865 .561

10 .304 .809 503

7 .303 .621 .318

When the destroyers face submarines with low maximum speeds the

[" range for possible improved detection is limited and deployment of

passive detectors is not as efficient as improved equipment.

U MX Pr (no detection) Pr (no detection) with Difference
MAX with passive detectors no passive detectors

5 .288 .511 ,223

3 .178 .295 .117

The optimal strategic choice of the destroyer stabilizes for submarine

speeds of 7 knots or greater. The submarine's optimal strategic

choice becomes fixed if speeds of 10 knots or greater are possible.

The rate of destroyer course reversals is less than in previous

tables where no passive detectors were deployed. The implication

is that passive sonars provide the defenders with sufficient extra

listening capability, reducing the need for trapping the submarine.

More emphasis can be placed by the destroyers on a systematic

search.
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I The most notable feature of Table III-b is the limitation on

the submarine's optimal speed to 10 knots. The significant differences

between optimal and maximum available speeds is explained as follows:

I the fact that passive detectors are deployed randomly, means the sub-

marine can not predict their location. (The destroyers generate

Ienough noise under our assumption that any destroyers course and

position can be determined when submarine and destroyer's course and

within a distance of DSUB, which equals 20 n.m. in these tables.)

I Thus in order that the submarine may retain some chance of undetect-

ed transit, his speed must be restrained to the threshold value of

ii 10 knots (though it is interesting to note that a threshold value of

5 knots yields a probability of no detection which does not differ

within any statistical significance.)

ITables IV-a and iV-b

In these tables the probabilities of undetected transit and the

associated game theoretic solutions are considered under conditions

of " good" equipment and sea state with the deployment of passive

sonars in a ratio of 4:1 to active sensors. The reductions in the

probability of undetected transit at the game solutions is dramatic:

I
I -34-
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I U Pr (no detection) Pr (no detection) Difference
X= 1.0 db - hrs, X = 0.1 db - hrs.I with passive detectors no passive detector

3 .010 .295 .285

5 .069 .511 .442

7 .117 .621 .504

I 10 .173 .809 .636

13 .173 .865 .692

15 .173 .921 .748

[ 17 .182 .921 .739

I r The submarine's optimal speed is essentially limited to 7 knots. The

case where the submarine's maximum allowable speed is 17 knots

S(which equals the destroyer speed) may be considered in the follow-

ing light. At this threshold value tie submarine's best policy is

to choose his time and transit path carefully, thereby completely

Iavoiding active son-irs while taking the chance that few passive

sonars are within sonar range.

II This conclusion is supported by the fact that a caution factor

of 2 is optimal and that the mean path length of the submarine transit

is significantly greater than usual (50 n.m. versus 38 n. m.), i.e.

the submarine has spent considerable time moving East to West be-

fore proceed'ing North. The best destroyer policy is to adopt a

pattern with no course reversals, the randomization of motion angles

in pattern 2 being sufficiently unpredictable in these situations.
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I Tables V-a and V-b

The results derived from running the simulation program with

the relatively unsophisticated cookie-cutter model of detection are dis-

I fplayed in these tables. The inadequacy of using this method to sim-

ulate the destroyers' sonar gear is obvious in that there is no satis-

j !factory match between optimal strategies under the two modes. The

probabilities of undetected penetration of the barrier most nearly

match the db-min model with ) = 1. 0 db-hrs. However whenthe

submarine is restricted to low maximum speeds the differences are

highly significant and too large to be acceptable.

lii Solutions based upon the cookie-cutter model can therefore

be seriously misleading. In so far as possible the use of this sim-

plistic model of s-nar equipment should be avoided in the analysis of

fl future exercises or simulations.
I I Table VI

The effect of a variation in DSUB, the submarine's maximum

L sonar range was investigated for two typical strategy choices. The

results as displayed in this table indicate that in some cases it may

be of advantage to the submarine to artifically limit its detection

Srange to a value less than the maximal range. A possible inter-

Ipretation of this non-intuitive conclusion is as follows.

In the cases considered destroyer course changes and reversals

I are a prominent random factor in the pattern of motion the destroyer

traces out in time. The submarine's ability to predict the destroyer s

1 - 36Li



path is thereby severely restricted. An optimal value of DSUB

less than the maximum possible suggest that the submarine shouldrnot base its own movement though the barrier upon predictions of

destroyer motion far into the future. Instead, the submarine should

limit his predictions to close encounter situations. In these cases

the relevant time horizon required is short enough to preclude the

greater part of random destroyer course changes. The submarine

[improves the overall probability of no detection by skirting the

dangerous area of the destroyer's sonar range. As the destroyer's

ability to detect the submarine improves the optimal value of DSUB

can be expected to increase (closer approach becomes more dan-

gerous to the submarine). This deduction is borne out by the fact

that when X 1.0 db - hrs the optimal DSUB derived from

Table VI is greater.

Table VII

I The learning factrr a is described in Section 3. This table

investigates the sensitivity of t,'e model to changes in the value

chosen for a. As long as a is constrained to the values .5 <a .9

for the case U= 10. n.m. and to the values .5 < a<1.0 for the

case U = 5. n.m. the resultant probabilities of undetected transit

display statistically non-significant variation. In general values of

S= .9 and 1= 1.0 appear optimal.
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I Table VIII

This table lists the effects of variation in GNGFAC, the

factor which governs the submarines decision whether to go North

or to wait (see Section 3). As indicated in the table, at low speeds

GNGFAG = 1. 0 appears to be clearly optimal. At higher submarine

speeds GNGFAC should be reduced to lie between .75 and 1.0,

-- in order that optimality be retained. These value s may be inter-

preted to mean that at low speeds the submarine should choose

his opportunity to head through the barrier with greater caution.

When U = 10 the submarine can display somewhat less caution,

i probably due to the fact that h! time of exposure to the defender's

sonar gear is significantly reduced.

Tables IX and X

The geometric configuration of the destroyer patrol boxes

is considered in these tables. Since the depth of the barrier patrol

box is of no consequence to a destroyer using the straight back and

Ij forth type of patrol (IZIG = 3), only one illustrative case is considered

L in Table IX where the results of BARDEP variations are listed. The

[ table reveals that for "average" equipment and/or sea states the
[fjidestroyer should patrol a fairly shallow box, i.e. BARDEP = 2.5 n.m.

is optimal. If "good" equipment and/or sea states are obtained, the

barrier depth should be increased to an optimal value BARDEP = 7.5 n.m.

The probable conclusion to be drawn is that when the destro-ver achieves

dx -38-



an advantage over the submarine due to improved sonar ability,

a larger area can be examined. When conditions are not so

favorable the destroyer should limit the search areas North-

South component. For the case under consideration these con-

clusions support and verify the results of Fisher[Z].

Table X was prepared according to the following scheme..

it is presumed that the center points of the destroyer patrol box

are to remain 50 n. m. apart. Each value of BARWID will then'

result in a gap between the patrol boxes. Though the gap may be

swept by the destroyers' sonars, they do not enter the gap. If the

submarine can determine the location and width of the gap, it is

generally to his advantage to transit the barrier by traveling

through the gap.

The results indicate that a gap between patrol boxes of

20 n.m. is optimal if no passive sensors are deployed. The optimal

gap size is 0 n.m. (i. e. no gap at all) if passive detectors are

deployed uniformly over the barrier in a ratio of 4:1. If appears that

-i.ice the passive detectors (in the present configuration of the

model) are randomly distributed throughout the patrol boxes as

well as in the gaps, the passive sensors intensify the destroyer's

coverage of the boxes. When no passive detectors are present the

destroyer does best by concentrating his search effort to a more

limited area, with frequent sweeps of his sonar into the gap. The

natural difficulties the submarine faces in attempting zo determine

the gap location accurately serve to limit the submarines ability
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to effectively utilize the large open space between two destroyers.

Care must be taken in interpreting these tables. Para-S. meters were varied individually, holding all other external variables

[ fixed. The results of varying two parameters simultaneously can

not always be predicted from the single variation results. An

example is illustrative.

Consider the case U = 10.0, CC = 1, IZIG = 2, WEIGHT = 0.7,

, , = 0.1 db-hrs., and r = 0. Table -X indicates that a barrier depth

of BARDEP = Z.5 is optimal. Table X allows the conclusion that

a gap size of 20 n. m. is a best choice for the destroyer. However

when the gap is 20 n.m., BARDEP = 2.5 is no longer optimal as

illustrated in the following table.

t BARDEP Pr (no detection)

7.5 .809

5 .693

2.5 .805

With a gap of 20 n.m., BARDEP = 5. is optimal! Extensive re3earch

is necessary in order to determine the optimal values for all para-

Limeters that are incorporated into the rodel's structure simultaneously.

Several other results were obtained from the model. These
.j findings are of a more general nature and are graphed below. In

i lfigure B-6, the probability of a submarine achieving undetected

penetration of the patrol barrier is graphed as a function of the
maximum submarine speed for several values of r (the passive:active

-40-



sensor ratio). This data is derived from the case U = 10., CC = 1,

IZIG = 2, WEIGHT = 0.7, X = 0.1 db - hrs.

Figure B-7, shows the optimal submarine speed as a function

[ of r, the ratio of passive to active detectors. The variable para-

meters were set as follows: CC = 1, IZIG = 2, WEIGHT = 0.7,

=1.0 db -hrs.

:14

i
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1Pr (no detection)

r=

r 2 .

r= 1

r= 2

35 7 10 1'3 1,5 17

Figure B-.6. Prbbliyo no detection as a function

ofseeIo various ratios of passive

toaciv sonars.
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J Figure B-7. Optimal Submarine Speedj
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4 3 Table I-b

Optimal Strategies

I X = 0. 1 db-hrs.; No passive sensors

UMAX  3. 5. 7. 10. 13. 15. 17.

UOPT 3. 5. 7. 10. 13. 15. 15.

CcOPT 2 1 0 2 1 1

IZIGOPT 1 3 1 1 2 2 2

WEIGHTOPT 1. .5 1. 1. .5 .5 .5

Pr.'To detection) .,295 .511 .621 .809 .8651 .921 .921

45
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j Table II-a

No passive sonars

Detection rate: 0. 1 db - hrs.,

D-str IZI - ZIGZAG 2 -'RANDOM' 3 - STRAIGHT LINE

Sub W
U cc W 5 .7 1. .5 .7 1. .5 .7 1.

3 0 .049 .01

! .318 .066 .01 .194 .230 .147 .138 .020 .206

2 .081 .01

5 0 .023 .163 .167 .034 .064

1 .438 .356 .118 .130 .124 .283 .183 .148 .430

2 .033 .037 .204 .157 .054

7 0 .253 .284 .343 .090

1 .597 .434 .265 .050 .244 .372 .476 .248 .641

S.160 .354 .374 .254

10 0 .305 .441 .378 .320 .289 .193

1 .709 .610 .582 .553 .615 .447 .514 .630 .711

2 .606 .660 .428 .587 .143 .234

13 0 .490 .448 .388

1 .859 .876 .860 .677 .606 .676 .785 .878 .783

2 .670 .699 .690

15 0 .544 .470

1 .896 .917 .881 .815 .847 .825 .813 .933 .865

z .731 .779

17 0 .600 .509

1 .943 .926 .943 .843 .890 .825 .988 .99 .987

2 .769 .890
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I
j Table II-b

Optimal Strategies

1 0 db-hrs.; No passive sensors

F

I UMAX 3. 5. . 0. 13. 15. 17.

- UOPT 3. 5. 7. 10. 13. 15. 17.

ccGOPT 1 1 2 1 1 1 1

IZIGOPT 1 1 3 3 2 3 2

WEIGHTOPT 1. 1. .7 .5 . 5 . 5 .5

Pr(No detection) 0.10 .118 .254 .514 .677 .813 .843

I47
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Table Ill-a

Four passive sonars per active sonar

j' Detection rate: 0. 1 db - hrs.

e : I - ZIGZAG _ . 2 - RANDOM 3 - STRAIGHT LINE

Sub W 5 .7 1. .5 .7 1. .5 .7 1.
I ~u cc ..

3 0 27 .155

J 1 .273 .199 .152 .320 .345 ,333 .276 .226 .269

2 .173 .178

I 5 0 .188 .270 .290 .201 .205

1 ,387 .382 .313 .315 .296 .382 .288 .303 ,322

2 .206 .211 .347 .246 .238

7 0 .334 .274 .285 .287

1 .393 .338 .289 .197 .304 .312 .318 .291 .379

2 .206 .269 .334 .244

10 0 .277 .288 .287 .263 .290 .260

1 .322 .291 .279 .283 .281 .242 .318 .304 .315

2 .187 .249 .251 .239 .135 .189

13 0 .225 .210 .197

ii 1 .208 .206 .196 .226 .180 .214 .193 .190 .132

2 .118 .136 .141

L15 0 .164 .160

'1 .138 .142 .140 .]34 .140 .124 .098 .160 .082

2 .071 .049

• 17 0 .120 .112

1 0.99 .082 .067 .075 .075 .066 .011 .043 .012

.039 .040
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I
Table III-b

Optimal Strategies

i = 0. 1 db-hrs. ; 4 passive sonars per active sonar

u MA X  3. 5. 7. 10. 13. 15. 17.

r UOPT 3. 5. 5. 10. 10. 10. 10.

CcOPT 2 1 1 1 1 1

Z IZOPT 1 3 3 3 3 3 3

JWEIGHT OPT 1 . . 5 .7 .7 .7 .7 .7

[Pr(No detection) .170 .288 .303 .304 .304 .304 .304

49
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Table IV-a

Four passive sonars per active sonar

Detection rate: 1. 0 db - hrs.

Destr IZIG 1 - ZIGZAG 2 -_RANDOMI 3 - STRAIGH LINE
Sub -" W
UbCC .7 1 . .5 .7 1, .5 .7 1.

3 0 .027 .01

1 .209 .043 .0! .123 .147 .093 .085 .012 .126

2 .049 .01

5 0 .013 .097 .099 .020 .038

1 .257 .208 .069 .075 .072 .160 .103 .083 .236

2 .017 .019 .104 .078 .024

7 0 .137 .150 .177 .048

1 .293 .211 .126 .024 .113 .173 .213 .117 .305

2 .062 .145 .167 .090

10 0 .130 .183 .157 .131 .124 .082

1 .264 .210 .207 .194 .206 .153 .200 .214 .256

2 .140 .192 .136 .164 .032 .063

13 0 .144 .130 .114

1 .192 .190 .178 .177 .126 .163 .162 .166 .121

2 .089 .105 .108

15 0 .114 .102

1 .127 .1-2 .129 .119 .125 .110 .092 .152 .075

2 .060 .042

17 0 .088 .075

1 .094 ,077 .064 .069 .071 .060 .049 .01 .051

2 .160 .182
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[ Table IV-b

Optimal Strategies

=1.0 db-hrs., 4 passive sensors per active sensor

- UMAX 3. 5. 7. 10. 13. 15. 17.

UOPT 3. 5. 7. 7. 7. 7. 17.

cc COPT 1 1 11112

OPT 1 3 2 2 2 2

WEIGHT I 1. 1.

OPT 1. j.7 1. 1.17 1. 1.
Pr(No detection) .010 .069 .117 .173 .173 .182
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I Table V-a

No passive sensors

Cookie cutter detection model

Destr IZIC 1 -ZIGZAG ___ 2 -_RANDOM1  3 - STRAIGHT LINE.

SU C; 5 .7 1.5 .7 1. .5 .7 1.

3 0 .0 .0
- .210 .030 .0 .140 .100 .050 .0 .0 .16

2 .040 .0

5 0 .0 .110 .110 .0 .030

1 .390 .320 .0 .0 .030 .050 .050 .010 .390

2 .0 .0 .0 .0 .010

S7 0 .090 .200 .320 .020

l 1 .550 .350 .110 .040 .140 .230 .213 .130 .620

2 .030 .300 .170 .0

-H o 0 .250 .340 .260 .210 .170 .150

1 .630 .440 .440 .420 .560 .350 .380 .500 .630

t 2 j .420 .630 .340 .410 .020 .100

13 0 1 .430 .380 .330

1 l.810 .850 .790 .600 .540 .630 .640 .740 .760

2 .630 .680 .650

15 0 .460 .390
I

L 1 .840 .850 .800 .750 .700 .640 .810 850 .840

2 . .620 .710
L 17 0 .520 .450

1 .890 .860 .840 .840 .860 .780 .850 .980 .970

S.720 .880
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[Table V-b

Optimal Strategies

ICookie- cutter detection; no passive sensors

[

I UMAX 3. 5. 7. 10. 13. 15.

I UOPT 3. 5. 7. 10. 13. 15. 17.

CCOPT - - 1 1 2 1 1

IZIGOPT 1 1 1 3 2 2 2

I WEIGHTOPT 1 1 1 .5 ,5 .7 .5

Pr(No detection) .000 .000 .110 .380 .630 .700 .840

53-



I

I Table VI

I Case I

U = i0

cc =1

SCIZIG =2

-- WEIGHT= .7

0. 1,, db -hrs. ) = 1.0 db -hrs.

r=0 r=4 r=0 r=4

DSUB +
Ii0 .758- .06 .325 .515 .220

5 .845- .04 .361 .530 .227

10 .779-.06 .313 .512 .2.06

20 841 - .04 .2Z81 .615 .206

25I. 786t .05 .Z77 .446 .157

Case 2

U = 5
CC = 1

IZIG = 3

WEIGHT = .5

T X=0.1 db -hrs. = 1.0 db -hrs.

I i r=0 r= 4 r=0 r

DSUB=
0 .419 - .06 .261 .130 .081

5 .500 + .06  .307 .158 .097

10 .537t .06 .318 .187 .111

S201 .511 + .06 .288 .183 .103

25 1 385- .06 .213 .079 .044
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Table VII

Case 1

U =10

cc
IZIG = 2

WEIGHT = .7

=0. 1 db -hrs. X,= i.0 a -hrs.

r=0 r=4 r= 1.0 r=4

1.0 . 7 9 7 .05 .245 .468 .144

.9 .8 47
+ .S .303 .630 .226

i .8 .845+ 05 .303 .610 .219

.7 .848 - .04 .282 .615 .205

I .5 .8 41t .04 .281 .615 . ,06

.23 . 8 3 6
- .05 .280 .615 .z06

Case 2

U =5

CC = 1

I IZIG = 3

WEIGHT = .5
Ir

0.1 db -hrs. 1.0 db - hrs.

Of +

1. i .32 .9+ ' "202 1I0
•.9 .534 .06 .295 .188 .104

7 .521- .06 .294 .174 .098

S5 .511 - .06 .288 .183 .103

* 25 . 484
- .06 .27Z .161 .091
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Table VIII

Case 1

U = 10

Ij CC = 1

IZIG = 2

WEIGHT = .7

=O.l db-hrs. X 1.0 db-hrs.

r=0 r=4 r=0 r=4

GNGFAC= +I 1.5 .805 + .05 .285 .555 .197

1.0 .818 + .06 .267 .626 .206

I .75 .841+ .04 .281 .615 .206

.50 .740 + .06 .288 .474 .1851 .25 .722 .06 .264 .486 .178

j Case Z

u =5I CC = 1

IZIG = 3

I WEIGHT = . 5

i ),= 0. 1 db -hrs. .=1.0 db - hrs.

r=0 r=4 r=0 r=4

I GNGFAC =
1.5 .493t .06 .256 .180 .093

1.0 .. 22.7 ..... 2..

.75 .511t .06 .288 .183 .103

.50 .456 + .06 .264 .123 .071

.25 .354 + .05 .Z10 .028 .016
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j Table IX

CC = 1
IZIG = 2

[ WEIGHT = . 7

X0. 1 db-hrs. )= 1.0 db -hrs.

r=0 r=4 r=0 r=4

BARDEP=

10. .821+ .05 .311 .563 .213

7.5 .823 04 306 .543 202

5 . 8 4 1 t .04  .281 .615 .206

2.5 .7651 .07 .280 .657 .240

2 . 7 7 6 t .06 .313 .555 .224

I

- I

II
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Table X

Case 1

I U =10

CC = 1

J IZIG = 2

WEIGHT = .7

X=0.l db -hrs. X 1.0 db -hrs.

r =0 r= 4 r =0 r= 4

GAPSIZE=
0. .816,t.05 .244 .566 .169+

10. .8 4 1
- .04  .281 615 .?06

20. . 6 9 3t . 06 .304 .432 .190

L 30. .69 9 t .07  .361 .448 .231

Case 2

U -5
CC =1I

UIZIG =3

WEIGHT = . 5

=0.1 db-hrs. X 1.0 db-hrs.
r=O r =4 r=O r= 4

GAPSIZE= I

0. .4 9 9 t .06 .203 .157 .071

i0. .5iit. 0 6  .288 .183 .103

20. J.403 .08 .261 .265 .172

30. 43t.8 .370 .341 .236
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Appendix B-I. Subroutine WAIT

I
This subroutine determines whether the submarine can safely proceed

I North; if not, it determines the length of time, denoteu b- symbol AA, that

I it is necessary to "Wait" (defined below) before it is saft t proceed, assuming

the destroyer maintains its present course. If the destroyer changes course

during this "Wait" period, the situation is re-examined. The purpose of this

j subroutine is to advance the time of the next examination of the situation as

far as possible; it is not necessary to consider events in the interim. This

simulation thus differs from the conventional sim±nulation procedure in which_time proceeds in regular intervals of (say) .1 hours.

Two procedures are available during the "Wait" period.

(1) Only one destroyer has been detected

We calculate the required Wait, on the basis that during the Wait

period the submarine proceeds either to the East or to the West at speed U.

During this period, a CPA (closest point of approach) is experienced with the

destroyer. The direction - East or West - yielding the largest CPA is chosen.

In the event that the two CPA's are equal (this happens when the destroyers

track is precisely in the E-W direction), the direction leading awa from the

diestroyer is chosen.

(2) Two (or more) destroyers have been detected

The submarine is required to lie d.i.w. (dead in water) during the

Wait period. The motivation for this is that, in most situations, a movement
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to the East or West would be of no advantage when oppo 3ing two destroyers,

and would increase the chance of detection through passive means.

Analysis

The solid line indicates destroyer motion relative to

the submarine during the WAIT period. The submarine's absolute velocity

during this time is

(i) U or U (two cases)

(ii) zero. (d.i.w.)

according to the description in the previous section.

The dotted line ------------ indicates destroyer relative motion after

the Submarine resumes its Northerly motion, and results in a CPA of pre-

cisely RMINP (provided destroyer motion does not change).

LAll co-ordinates are destroyer positions relative to the submarine.

I (XR1 ,YR2) is the initial relative position of the destroyer (XR2 ,YRZ) is an
1.

arbitrary position along this relative track of the destroyer, used to define the

track conveniently. (XINT,YINT) corresponds to the time at which the sub-

marine resumes its Northerly course.

(02, YRY2)

(INT, YINT) --- P, YPR)

RMINP

01R, YRl) -

0 (Submarine)

Figure B- . Geometry for WAIT procedure
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(XINT,YINT) are obtained as the solution for (X,Y) of!
Y - YR1 =tan 0 (X - XR1)!

(Y -RMIN •cos Y/ (X + RMGN sinr tanr

or (after some manipulation)

tan -tan Y ) X = + os (tan 0 • XR1 - YR 1)
(tan-tan$") = + Cos Y, (-)

~i1i  Note that, taking RMIN to be + or -, we obtain two formal solutions

for (XINT,YINT). One of these will correspond to the situation where the sub-

marine waits for the destroyer to approach, and then heads North just in time

jto achieve a CPA of RMINP. By leaving earlier, the submarine could achieve

a larger CPA.

This is clearly unrealistic, when the submarine is opposing a single

Ii (detected) destroyer. In other words, the submarine would not wait the indicated

i p period, but would go North immediately.

I2

However, the two cases have been includec to allow for their possible

use in situations where (say) the submarine is attempting to penetrate between

two destroyers. No use has been made of this in the current work. Instead, a

simpler procedure is used to deal with two or more destroyers, as follows.

In our application, if both solutions are feasible, the subroutine would

I (already)have indicated a wait of zero. The program would then examine any

i -62 -
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other detected destroyers to see if a wait was desirable in their case. The

I only case of interest to us is where only one of the solutions is feasible, and

the program determines which this is. For completeness, if both solutions

are feasible, the earlier one (i.e. Ahe one with the earlier time corres-

Iponding to (XINT,YINT)) is used. A tentative decision to "go" (proceed

ii Northwards immediately is made if at least one of the following holds:

(i) The resulting CPA exceeds RMINP

. (ii) The resulting CPA exceeds GNGFAC times the (best) CPA obtained

Fby waiting for a favorable opportunity to transit (this latter CPA will

occur during the WAIT phase).

The motivation for this is that a resulting CPA no worse than GNGFAC of

* jthe CPA obtained by waiting is worth risking, because of assumed time con-

straints on transit, and increased risk of detection while lying off the barrier.

In the event that a tentative decision to "go" is made, we examine also

what will happen if the (best) Wait procedure were used. If the resulting CPA

is less thanRDFAC of RMINP, we clearly should not Wait under any circumstances

I (for example, on account of another destroyer). In this case, AA is set equal

I to -1 as a flag, and further examination of the other destroyers is abandoned.

If, on the other hand, there is no such urgency, or if the .entative

decision is to wait, we proceed to examine the other detected deroyers.

If no utrgent "GO" indication is found, the final recommended WAIT period is

the maximum of the WAIT periods for the detected destroyers.
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I

I Appendix B-If. Calculation of Detection Probability

(Describes INTEG Subroutine, and parts of GRIND subroutine)

We assume that the signal excess, in db, of the returned ping over

background noise may be expressed as

E = Constant - 40 log 1 0 r

Swhere r is the range in n. mi.

Let us ir.croduce the symbol RMIN, corresponding to the range at which

"-i E becomes zero. Then it is convenient to define

L- [40 log 10 (r/RMIN), r < RMIN
E =

0 , r>RMIN

IThe probability of survival for a given submarine transit, writing E, r

as functions of t, will be

t tS 2
(1) exp [- X E(t) dt:] = exp [_j X40 log1 0 (r (t) /RMIN) dt]

f tl t1

exp [-20 (.4349) X J t1 log e r (t) dt - (log e RMIN 2  1

where X is a constant

ttlst Z are the first and last times at which r = RMIN.
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IThe last expression (1) is calculated in the subroutine GRIND,

using 13 different values for X .

The expression (tZ-t 1 ) is simply the accumulated time during which

the range is less than RMIN, and this is accumulated in the subroutine

I RANGE.

The expression

J log e r (t) •dt

is to be accumulated only during the same period, ensured by the sub-
IL routine RANGE again, which calls the subroutine INTEG for the com-

putation of each portion of the integral. It is convenient to calculate the

integral for intervals of time during which the motion of the destroyer

relative to the submarine is straight line.

(TUPP1 ) SUL p

-Li-----I
SUB. (TLOW) (TT OW)

DESTROYER

DESTROYER

2TP (TUPP)

Figure B-9. Straight line segments of relative motion
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I Various situations can arise, and the "book-keeping" is handled by the sub-

I routine RANGE. It is clear that INTEG need only calculate the integral

in the following standard situation.

I SUB. CPA

(TLOW)

r VDESTROYER

j(TUPP)

Fiqure B- 10. Standard Situation for INTEG

2 2 2 2ii Now r = a + b t , where a = CPA, b =

Thus J log (r 2 )dt =flog (a + b ) dt
e e

t log (a '+ b t 2 ) -2t + Z(a/b) 1 / 2 tan- [(b/a) /2t]

1This expression is defined in INTEG as function FN(T), and T is replaced

I by TUPP and TLOW i. turn.

I - 66-
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i,
Appendix B-HI. Contribution of Passive Sensors to

Detection Probability (Subroutine GRIND)

Assume that the distance at which the submarine can be heard by a

passive detector is given by

(05 U) m.
R- = 2 10 n. mi.

The average duration of t-he submarine's transit (time counting only

while the submarine is in moton) is called (BB/FLII) hours. The area swept

out by a circle radius R with center the submarine, ignoring overlapping sec-

tion s, is given by

2 - (BB/FLII) U

[where U = speed of the submarine (knots).

Assume there are n sensors located randomly in an area

4 (BARDEP + RMIN) • (BARWID + GAP)

I

~BARWID
I '

BARDEPT

RMINI I 4,: I

Figure B-11. Region containing 1 active, n passive, sensors
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Then the probability of no detection by passive sensors is given byI
[exp (-2 R (BB/FLII) U/AREAI ]n

This expression is computed for various values of n, which is the

ratio of passive, active sensors (assume each destroyer is an active sensor).

These survival probabilities are applied ;n turn to the survival probability

relating to detection by active sensors.

It is assumed that no interference is caused to passive detection by

active detection procedures.

I

-68-

I
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I C. THE BARRIER PENETRATION PROBLEM

1. General Discussion

The timing of an attempted penetration through a screen or

barrier is an important tactic for a submarine. The exposure risk

in waiting makes an early penetration desirable while the additional

information and possibly more favorable positioning available by

delaying makes a later penetration desirable. In addition, there will

generally be greater utility in penetrating during some periods than

during others.

When destroyers comprise the screen, they will generally

S employ active sonar. This allows the submarine to acquire informa-

tion about the probability of detection for the various courses of action

Ll available to it. Furthermore, this information is constantly being

revised until the submarine dives and actually begins the transit. In

Sthis case, the submarine is faced with the decision of when to stopN waiting and to initiate an action which we will regard here as irre-

versible. A problem of this sort is called a stopping rule problem
b although in our case it might have been more appropriate if it were

' termed a "starting" rule problem. An analysis of the submarine

penetration problem where it is constantly receiving information

4 from active sonar destroyers is contained in the next section.

In some instances, the submarine cannot regularly obtain new

data about the screen. This can arise from such factors as silent

defenders (destroyers, submarine, aircraft), inability to hear through

self-noise, and separations beyond the range at which the submarine

V -70-
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can hear any sonar. To model this situation we have assumed that

the submarine may make an initial projection of the probable futurerlocation of defensive craft (using a uniform distribution if no informa-

tion at all is available). Since no additional information is received

the optimal waiting period and subsequent movement through the screen

Ican be determined in advance. In the third section we present a model

of this situation which uses a discrete control theory approach and

[which can be solved by dynamic programming.

It is our feeling that these models are fairly realistic represen-

i I tations of present submarine performance and are suitable for use in

models of submarine-barrier as screen encounters. However, there

are situations where submarine strategy could probably be improved

by application of these methods. This is particularly true of the first

model described below.
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2. Stopping Rule Analysis of the Barrier Penetration Problem

a. Introduction

We assume that a submarine is attempting to penetrate, with-

-out being detected, barrier or screen patrolled by one or more des-

troyers. Since the destroyers employ active sonar equipment, the

submarine is able to detect the presence of the destroyers before the

destroyers are able to detect the submarine. The problem faced by

the submarine is whether to continue across the barrier or whether

to wait for more fortuitous positions of the destroyers along the

barrier. If it waits for the period, the subr-iarine may reposition it-

self to be better situated at the next period or to avoid a potential threat

during the current period. In this report we formulate the barrier

Ii penetration problem as a stopping rule problem for the finite horizonucase and develop the dynamic programming recursion which computes

the optimal policy for the submarine. We then extend these results

Hto allow an infinite planning horizon.

b. Definitions

Let t 1 , t 2 ... , t i ... be a set of times such tbat either:

LI(a) The submarine first detects one or more destroyers at ti;

(b) The submarine detects one or more destroye rs ajj (~ Te sbmaine etets ne r moe dstryercourse changes
at t; or

(c) The sub narine no longer detects one or more destroyers

i after t ..

- 72 -!I



Let P (ti) be the probability that the subma-ine will be detected

after t i if it leaves at its best time within the interval [t + 1 and

with its best course.

Let A (ti) be the probability that the submarine will be detected

during the interval [t., % + 1) if it does not initiate transit.

We assume that the destroyers employ random search strategies

(e. g., the destroyers follow straight line trajectories for random lengths

of time, followed by random course changes). Consequently, P (t i ) and
Q (t i ) are random variables for i- 1, 2, ... However, at t i , we

assume that the submarine is able to make reasonable estimates for

[ P (ti) and Q (t i ) and, on the basis of these estimates, determine whether

to continue across the barrier during [ti, t i + l) or whether to wait ior

I the entire interval. We assume that the random variables (P(ti), Q (t))

and (P(ti), Q(tj)) are statistically independent if i j, but we do allow

P (t.) and Q (t.) to have a joint density function. Let f [P(t.), Q (t.)]

be the joint probability density function for the random variables for

i--l, 2,...

Let p. ( " ) be a Borel measurable policy defined as follows: if

Pi [P(ti)' Q(ti)] = 1

then the submarine leaves on its best course and at its best time during

the interval rt t i ); and if

The class of Borel measurable functions is defined in standard
texts such as Refs. 1 and 2.
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I

IL P (t Q (t 0,

I then te submarine waits at least until t i + The policy pi

i = 1, 2, ... , defines the submarine strategy to be u3ed. In the

next two sections we will characterize the form of the optimal sub-

i tmarine policy.

It is convenient to define the functions

H [p~ (i =i Pi (P )- (P, Q) dd

and

HG [pi H, Ri+ 1]

= f'[1 - 0i (P, Q)I [R i + 1 " (1 -Q)+Q] f(P,Q)dPdQ.

c. Finite Horizon Case

L In the finite horizon case, the submarine must start crossing

the barrier within the inteval [t 1 , ti). The function q [P (ti), Q(ti)]

L is said to be an admissible stopping rule policy if:

(a) Pi [P(ti), Q(ti)] is a Borel measurable functior of P(t.) and

Q(ti);

(b) Pi [P(ti), Q(ti] C ( 0, 1 ) for 0 < P(t)< 1 and 0 < Q(t) < 1; and

(c) if i = T - 1, then

[P(ti), Q(ti) ]  I I

- 74 -



The last condition insures that the submarine will start crossing the

barrier within the time interval [t 1 , tT ). The submarine strategy

jover the entire planning horizon is defined by the functions

(.I, Pz (. PT- .. '). It is convenient to use the convention that

P = H pi+l "  T-I " ] "

The function P (") is aid to be admissible if and only if the functions

Pi C ) ' Pi + I PT - 1 ( - ) are admissible policies.

I. Let Ri [Pi (")] be the expected probability of detection of the

submarine after ti , given that the submarine waiting during [t 1 , t i )

and the admissible policy P (-) is used. Here Ri [ (" )j is a complex

function of P (") and f(.).

If there exists a policy pi ( ' ) such that

<

for all admissible policies p(.), then p ( ') is said to be the optimal

.th *
i stage stopping rule nolicy. We will prove that p(.) exists for

i = 1 2, . . .T-1 and that it satisfies

Pi  (' =[5()Pi+l()

for some function p.(.
1
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THEOREM 1: The optimal t stage stopping rule policy exists

and is defined as

i (.)=[Pi ()P i+l() (2)

for i I ... 1,-, where

L i if P(t.) < R Q(t ] +Qt.)Pi [ ti , t )] = - l[  -  (3)
0 otherwise,

R. =R[p. (.f] , (4)1 
1

!*

and R. satisfies the recursion

R i= H[p ()]+G[p.(-),P )

for i = 1 ... ,T-1, subject to the terminal condition

R (6)
T

-'S7
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I

PROOF: This result is proved by induction. Consider first i = T-1.

By Eqn. 1, T ) exists and is defined as

T [P(tT- 1 '1jT1 Q ] = 1

for all P(tTl) and Q(t ). Since R = 1 it is easy co verify that
T- T.-1 T

pT-!('), RT- 1 , and R T do satisfy Eqns. (3)-(5).

Next assume that the theorem is true for i+l ,i+2 ... ,T-1, and

I we will prove the result for i. It follows fro-in the definitions of R-

Hip(.)], G[p,(.),Ri , t (.)]] and the independence of the random variables

(P(t.),Q(L)) and (P(t )IQ(t )) that Ri[ i ( - )] satisfies the recursion
I

01 
ii 

il

[ o n ad iie polic -p.(.)] = [.(. ).)][- .)] yte7einton

G and the induction assumption,

1 R.[pi(')] > H[P+(.)] G[p.(-),R . (8)

I 1 +1 8

By the definitions of HI[p*.] and G[p (.).R..J.
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!

H[p()i + G[p(') R 1+ (9)

Ij = ff M[P,Q,Ri~l,pi(.)] f(P,Q) dP dQ| Il

where

,( P for pi(P,Q)= I

~ 1 +L Q i+l (i-Q) pi(P ' Q I= 0

[1L If we define

1 for _< + Il-Q)

ii~
Pi (PQ) = (I0)

! il0 otherwise,

then

M[P,Q,Ri+ 1 1+1 i ( ")] < M[PQ,Ri,p(•)]

H*
for any values of P,Q, and R and for any admissible function p.().

After integrating the above inequality, we haveI!

_[.[M[P,Q,R*+ IP(.) f(P,Q) dP dQ

-78-

I



< ~ JjM[P,QR* ,lp ()If(P,Q) dP dQI

which along with Eqns. (8)-(9) impiies that

! Ri[pi(.)l > H[o. (.] G[ i 4* 1(l (11)

If we define

ii
p (') -=~ [p )*' - l (' )

I Ithen by Eqn. (7)

I
!*

R ()] H[p (-)+G[p (.),R1~ 1 i+i~(2

Thus by Eqns. (Ii)-(12),

R[ (.)]_ Ri[P; (.)]I

for all admissible policies Pi Eqn (10) implies Eqn. (3), and Eqn.

(IZ) implies Eqns. (4)-(5), which completes the proof of the theorem.
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d. Infinite Horizon Case

In this section, we extend the results of the previous section

to allow an infinite planning horizon. This is appropriate when there

is no required time for initiating a penetration attempt and the risk

I in waiting is the compelling factor for an early transit. Let R (t) be

the minimum probability of detection of the submarine after t., given
that the submarine waited during [t 1 , ti) and that the submarine must

V start crossing the barrier within the interval [t i , tT).

THEOREM 2: For any fixed i, the limit

li* *
R = lim R. (T) (13)

T 1

exists.

PROOF: It is a simple exercise to show that

Ri (T+ 1)<R i (T).

Since Ri (T) is a probability, the sequence tRi (i), R i (i + 1),...]

is bounded from below by zero. Thus the theorem follows immediately

from the Monontone Convergence Theorem (Theorem 12. 1 in Ref. 3).

We next characterize the form of the limit R If X is a ran-

dom variable, then we represent the expectation of X as E (XJ.
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THEOREM 3: R satisfies

(14) 1,(min[P(t.);Q(t.)]) < R < E t(t.)]

for i= 1,2,...

PROOF: By Eqn. (10),
I

I.

M[P,Q,R +()p ( " )] - min[P;Q+R (T ) . (I-Q)]

which is a continuous function of P,Q, and R* (T). Thus it follows froma : R~~~~~i+I() hsi flosfo

Theorem Z3.9 in Rei. 3 that

r ain[P; Q+R+I(T) • (1- ,Qf ,Q) dPdQ

is a coninuous function of R.+ (T). By Theorem 2 and an elementary

property of continuous functions (Theorem 15.2 in Ref. 3),

lirn JminP;Q+Ri (T). (i-Q)] f(P,Q) dPdQ

Srfin [P; Q + R (I - Q)] f(P, Q) dP dQ
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I By Eqns. (9) and (12),

lrn R. (T) fi rnfmin P; Q +R 1 (T) (1 -Q) f(P, Q dP dQ

which im-plies that

R min[P;QR (1 -Q)] f(P, Q) d - Q

Since rnin P;Q + R (-Q)I< P

R < Pf(P,Q) dPdQ= EIPI

-.cis is the right hand side oi Eqn. (14). Also,

~r p. -

L in[P;Q+R (1-Q)] > min[P;01

ani thus

rp; r ,- rP ] (Q)dPQ
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which is the left hand side of Eqn. (14) and completes the proof of the

theorem.

For density functions f[P(ti), Q N )] that are encountered in

practice, it is expected that[
E (P(ti)] <I

[ and that

E min [P(t0)] >0;

thus Theorem 3 implies that the limit R* will be nontrivial

(i. e. 0 < R <).

e. Conclusions

Theorems 1 -2 imply that the optimal stopping rule policy pi (

for an infinite planning horizon is in the following form:

1[P0 if P(ti) <R • [1 - Q(t)] + Q(ti)"P- [P (ti) Q (ti) (15)
i ( 0 cherwise

where R is a constant. A method to determine R is the following:

use simulation experiments to compute the submarine detection prob-

ability for several values of R , and then pick that value which results

in the minimum detection probability.
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Some comments on the use of the policy arising from Eqn. (15)

are as follows:
SI(a) Although the destroyers may make random course changes

as the times t i , t i+1 etc., the random variables [P(ti), Q(ti)] and

* [P(t.), Q(t.)], i ij, probably will not be stochasticaily independent,

particulaily if there are several destroyers.

(b) There may be different values of R for different positions

of the submarine in the barrier; thus the empirical procedure for

measuring R descc'bed above results, in some sense, in an average•*
value for R

(c) Since the destroyers use random search tactics, estimating

P(ti) and Q(ti) may be quite difficult in practice. One approach is to

assume that the submarine can start across the barrier only at times

t i , ti+1, etc., and then estimate P(t i ) and Q(ti) by a.;suming that the

idestroyers and the submarine travel indefinitely on straight line

trajectories.

(d) The appropriate value for R depends upon the submarine's

speed, the search tactics of the destroyers, and the dimensions c~f the

barrier. After determining R for a number of combinations of

different values for these parameters, it may be possible to develop

a functional relationship between R and these variables.

18
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3. Dynamic Programming Approach to the
to the Barrier Penetration Problem

a. Itrod,.ction

This model arises when a submarine attempts to penetrate a

* finite barrier that is patrolled by one or more vessels and when the

following assumptions are valid:

1. The submarine is able to estimate a probability

density function for the locations of the veszels patrolling

the barrier;

2. The probability that the submarine can be de-

tected is a function of only the coordinates of the sonar

sensor and the submarine (i. e. , it is not a function of

r their velocities); and

3. The submarine is not allowed to bypass the

barrier, but must attempt to penetrate it within T time

periods.

The probability density function described in one may be

I simply a uniform distribution if no information is available. We

will develop a dynamic programming algorithm which computes

the submarine trajectory that minimizes the expected number of

detections prior to penetration.

b. Model Formulation

The geometry of the model is illustrated in the following

figure:

- 85 -
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I y
Submarine at

(x, y) Y
0 locations of destroyers

Ii

0T "

Figure C-1: ProblIem Geometry

1The finite barrier is between (0, 0) and (0, Y); the coordinates

of the submarine are (x, y); and the coordinates for Destroyer D.
° o 1

iiare (0, y.) Define:

T = the maximum number of time periods available
for the submarine to penetrate the barrier,

Pi(yi, t) = the probability density function for destroyer D.
1 1 to be at location (0, yi) in time period t,

q(x, y, yi) = the probability that a destroyer located at (0, y,)
will detect the submarine located at (x, y)
during a time period,

1 = the total number of destroyers that are patrolling
I.the barrier.

Estimates for the above parameters and functions are assumed to

-" be known by the submarine.

1 .. *~- .-



We will ,ise difference equations to describe the motion of the

submarine. Let

(x(t), y(t)) = the coordinates of the submarine at the beginning of
the tth time period.

(u(t), v(t)) = the control variables affecting the submarine's tra-
jectory.

[ The difference equations relating the trajectory to the cor'trol variables

areI-
I

x(t+l) = x(t) + A u(t)

y(t+l) = y(t) + B v(t)

I The control variables satisfy the constraints

u(t) ( u, U+l ,.. , l 0, +1, ,

v(t) t v, v+l ... , 0, +1 . . ..

and (3,

u(t) + v(t) 4 R

The initial coordinates of the submarine are

0 0(4
x(0) = x and y(0) = y (4)
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0 0
We assume that A, B, U, U, V, V, x , and y are integers and

that (x 0A) is also an integer.

An admissible trajectory X(x s ,y 5 , s, T) is defined to be a

set of coordinates

R - X(x s , ys, s, T) = [ (x(t), Y(t)): t = s, s+l,..., T)

which satsify Eqns. (1)-(3), the coordinates

s s
x(s)= x and y(s) y (5)

the constraints

0<y(t) <Y for t=s, s+l,..., T (6)

* "and the terminal condition

x(T) = 0.

[.' Define

h[x,y,t] 1 - J 1 (-q(x, y, yi)) Pi (yi, t)dyi; (7)
i=1 Y4=0

then the expected number of detections of the submarine when

s
following the admissible trajectory X(x s , y , s, T) is
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S S1
C[X(x s , y , s,7)] = T h[x(t), y(t), t] (8)

t=s

Let

F = the set of admissible traJectories X(xO, y 0, T) such

I that r< T;

0 0 *then an admissible trajectory X (xO y , 0, T is said to be optimal

if

X0 0

for all X(x,y , ,T) C F.

[ -c. Dynamic Programming Algorithm

We now develop an algorithm based upon dynamic programming

S] which computes the optimal admissible trajectory. Let

f(xs , y , s, T) = the minimum expected number of detections of a
submarine travelling on an admissible trajectory
from (x s ,y s ) at time period s to the barrier at

time period T.

This function satisfies the recursion

f(xs, s, 1) = h(xs, y , s) = h(xs,y , s) (9)

+min ( f(x s + Au(s),y + B v(s), s+l 7)],

where the minimization is over the set of values (u(s), v(s)) satisfying

constraints (2)-(3). By definition
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I f(0,yT T, T) = 0 . (10)

s
Thus by using Eqns. (9)-(10), f(xs ,y .5, T) can be computed for all

IS S
values (x y s) for which there exits an admissible trajectory

00 5 0
X(x , y , 0, T) such that x(s) = x and y(s) = y . The trajectory

X (x s ,y , s, 7) satisfying

f(x s , y, s, T) = C[X (x S ,y , s, T)]

is also deL'rmined from these computations. And finally, the

optimal admissible trajectory X (x0 , y 0, 7T) is found by solving

the minimization problem:

C[X*(x 0 , y ,0, T*)] =min £C[X*(x 0 , y 0 , 0 , r)]: T<T

I 90
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I j 4. Theoretical Analysis of Threshold Levels

a. Introduction

I In section Z we developed the stopping rule for use by a sub-

marine which continually receives new information while it is wait

Y ing. As expressed in equation 15 for an infinite time horizon, the

submarine should stop waiting and begin the transit if and only if

The quantity p(t i ) is the current esimate of the probability of

detection f the submarine begins the transit in time t i and Q(t.) is

the current estimate of the probability of detection between ti and

ti+l if the submarine waits.

The value of R is to be determined as a function of the geometry

of the barrier, the speed of vessels, the destroyer search tactics,

etc. It is possible to determine R* by simulation as suggested in

section 2; however, it is our objective in this section to explore

theoretical procedures for obtaining this quantity.I _ _

b. Analysis

It will be convenient to introduce some new notation as follows,

x. = the probability of a successful penetration if transit

1
is begun in period t i. (This equals 1 - P(t.) in

section 2.)

q ; the probability that the submarine will survive

between any two successive periods if transit is not
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I begun. (This equals 1 - Q(t i ) where Q(t i ) is indepen-

dent of ti. )

I p the threshold for initiating a transit.

The value of p is related to R". By substituting in equation (1)

above we find that transit should be initiated if and only if:

1 -x <R* q+ (1-q) (2)

* or

x. q - R q = q(l-R') (3)
II 1

Thus the threshold is related to R by the equality:

p =q(1-R*) (4)

• In this section we will work with p instead of R_ .

The value of x. obtained at each period ti may be regarded as

being drawn from some (unknown) distribi'tion F(x). At period t. we
1

have a history of x.'s obtained from the distribution. We shall assume

that the differences At. = t. - t. are sufficiently large so that the1 1 -

x. are statistically independent; we also may regard the At. as fixed

- iat some At to conform to our definition of q as a constant. From

the x. so obtained, we can determine a sample mean and variance at

- "; time i. Thus we define:

-~ il

IB
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s. (x. - x.) 1) (6)

With this information we can estimate F(x) at time ti; we will call

this distribution F i (x).

Since x. must lie in the range [ 0, 1 1, the distributions mustI

satisfy:

F(0) 0 F.(0) = 0 (7a, 7b)
1

F(l) 1 F.(!) = 1 (8a, 8b)
1

It will be convenient in the following tex, to use the distribution corn-

plements defined by:

T (x) =1 - F(x) (9)

V F.(x)= -j FiX)

Finally let us assume that the distributions are continuous and possess

derivatives given by f(x) and fi(x), the latter being associated with

the Fi (x).

At period ti we can form the current best estimate of p which

we will call r.. It will be a function of F.(x) and consequently a

function of x. and s..

We can also define the current estimate of the expected prob-

ability of success vi as follows:

v. = l x d F(x) + F(r i ) q vi+i (11)
r.

1
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The first part of the expression i3 the probability of a successful

Itransit if one is undertaken and the second part is the probability

of waiting until period ti+ 1  times the probability of remaining

undetected during ti+ 1  times the probability of success in

period t i+I The true value of the expected probability of suc-

cess v can be defined as follows:

1

v = xd F(x) + F(0) q v. (12)
~P

The first parts of equations (11) and (12) may be reform-

ulated by integrating by parts. Thus we obtain:

11
xdF(x) = r. F(ri) + F(x) dx (13)

r. r.

and a similar exoression with r. replaced by p. Substituting

1

(13) into (11) we obtain:

1 11 1i
v. = r. F (r i ) + F(x) dx + qvi+ 1 F(r i) (14)

r.

i", It is our objective to determine the value of r. which maximizes

this expression.

Ii Compare equation (14) with the expression of the value of the

game if p were known:

v = F(P) + .F(x) dx + qvF(P). (15)
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Forming the difference of v. - V we obtain:

r

v.- V = r F(r) - F() F(x) dx+ q (v. F (r) - v F(u)) (16)

jr ~~x fP~
where the integral dx is to be treated as (x) dx

Pr
if r is le.ss than P. Now this integral can be approximated as

follows:

F(x) dx V P(P) (r-P) - f (p) (r-p) . (17)

Note also that r F(r) - p F(p) may be replaced by:

[r P(r) -r f(p) + r f (P) -PP(P) (18)

" and, upon rearranging and using F(x) = 1 - F(x), by:

[ -r (F(r) - F(P)) + (r - P)) + (r - p) F(P). (19)

Similarly we can replace q (vi+1 F(r) - v F(p)) by:

q v.+1 (Fir) - F(P)) + q F(P) (v.+ 1 - V). (20)

Substituting these expressions into equation (16) and cancel-

ling terms we obtain:

- v ! (q v -r) (F(r) - F(P)) + - f(p) (r - P2 + q F(D) (v.i - v) (21)vi - +1v2 +41
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Transferring the right most part to the left hand side, multiplying

by g and replacing F(r) - F(p) by the approximation:

f(p) (r - p) (22)

I we obtain:

I q (vi - v) - q 2 (p) (vi+ 1 - V) tq (q vi+1 - r) f(P) (r - p)+ q f(p)(v- p)2 (23)

J IThis can be simplified to:

q (v. - v) - q 2 F(p) (v.+ I - v) _ - q f(p)(r - p) [ (r - p) + 2 (p- qvi+1 )1 (24)

I Now suppose we substitute the estimates Fi(x) and f.(x) for

the functions F(x) and F(x). We can then solve num-nerically the

following equation, derived from (15) for an estimate of p which

-i we will call i:

Max v = i (x) - - q Fi (Pi (25)
rPi Pi

where, of course, Pi is between zero and one. The estimate Pi

jj will have a sampling distribution.

- The value of r. is set relative to pi; let us deiine:

r. = Pi + m. (26)

where m. will be determined below. There will be a derivative
91
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II
sampling error in r.. Let us observe that:

}1

r (r)= q v i+l (27)

where () denotes expected value and

p = q v. (28)

These are necessary conditions for the threshold and estimated

[threshold to be in equilibrium. The conditions mean that one is

indifferent to whether he waits or transits when the stopping rule

is just satisified as an equality.

Let us define a new variable called d. as follows[ .
d. = q(v - v) = E(r i1) - p (29)

Now the value E(r i_) will approach p as i increases and d

will consequently approach 0. In terms of d., equation (24)
1

becomes

~di - q F(P) di+I 1 - q f(P) [(r - p)2 - 2 (r - P) d+ I  (30)+

If w# now take expectation with regard to r on the right

side of this equation we find

d. - q F(p) d.l - *q f(p) [m.2 + 2 m. d+l (31)
1+ *1 1 1

2.
where a. is the samDling of r.. Since we wish to maximize

v. and, consequently, di , we will maximize 2 m. di+ - m ' 2. by

setting m. = d i+ If we assume that r is normally distributed,
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t

then the correct choice for the bias for r is thus

2r distributed as N (p + di+ 1, a2) (32)

In passing, note that

1. f)(d 2  
-. 2)

v= v + 2 f(p) (di+ C i ) + qF(P) di+ 1  (33)

or

. v 1f(p qv 2 2v.=v+-f(p) (qv+ p) - . . + qf() (qvi+ - 0) (34)

c. Application

It is assumed that, in practice, the following conditions are
; i likely to obtain:

(1) Some information will be available on F(-). The form of

LI the distribution could be known, and there may be a priori distributions

on the parameters.

Also, some information on the x. - in particular the statistics

x. and s. - may have already been accumulated.

The "estimated" form of F(") at the current stage of the game

will be denotcd by Fb(" ) ("b" for Bayesian).

We shall be looking ahead at the next n stages of the game.

Fb() will be used in place of F(- ) for this purpose, in computing

optimal strategy. This notation is distinct from the notation F (.)
n

which referred to the current best estimate of F(. ) in the stage-by-

C! stage analysis of the game.

1±.. (2) We are content to "look ahead" a finite number of stages,
th

- n say, and to assume that at the n stage we have

-- -98 -
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I Vn+ 1  v, rn+1  P, m = q - p= 0 (35)n dn+ 1 qVn+ I

2(3) The variance of the estimate p at stage n, a , can be
n n

estimated in advance. This estimate may be derived from previous

f experience; from sampling studies making use of Fb( or from other

sources. We take

an+l = 0. (36)

The procedure is then as follows. We shall determine strategy

for the current stage (Stage 1) by looking ahead n stages. This

strategy may then be updated, or recalculated, when the next value

of x, namely x 2 , is determined, provided that we have survived to

Stage 2.

We first calculate estimates for p, v from equation (25) as:

^ =Fb(p) + 'Fb(r) dn (37)

V = sup I
1 - qFb()

where the supremum is attained for

0 p. (38)

We now apply equation (34) to stage n, and work backwards

until we reach Stage 1. Fb(" is used for F( ), etc., and P is used

for p.

-99-



I (Vn+1 =V )  (39)

I A A2 2
v :i v+ (1/2) fb (P [(qVn - p  - n

+ qf( )(qv p) (40)

(1 A 2 A A) 2 2
v. = v+ (1/2) fb ) (qvi+I -A 2 1

A f( A2 1)
1  + q ) - (4)

-. + qf( g) qv 2 - o) •(42)

-: Once v 2 is known, the correct choice for rl, is

A A A

r= p + d= p + (q v2 -) = q v2. (43)

I.
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:D. nNSTAi.1QANEOUS PROBABILITY DETECTION

1. Introduction

As indicated in the introductory chapter, a satisfactory model

of sonar detection . an essential aspect of analyzing submarine

encounters with patrolling vessels. In the course of our studies we

have examined several approaches. One prevalent method is referred

to as the "X , , model" from the occurrence of three parameters

I represented by these three Greek .etters in the equations of the model.

Because of its popularity, we review in the next sections that model

and the procedures used for ffiiting it to observed data. Another

method that is less widely used is the instantaneous detection model.

it is conjectured, however, that this model better explains the times

to detection observed in actual exercises. In section 3 we will describe

the instantaneous detection model in detail and in section 4 we will

illustrate the p -ocedures for fitting the model to observations from

exercises. Finally, in section 5, we will derive maximum likelihood

estimators and confidence regions for the parameters.
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I
2. The X,,a Model

We will first describe a method for determining detection

probability that has been extensively used. Let us begin by assuming

the geometry and other parameters (orientation, depth, speed, etc. )

of the submarine transit are fixed. For example, these can be taken

from an actual exercise.

In Figure D-l, the dotted line represents the expected signal

excess of the returned ping from the submarine over the background

noise, when the submarine is within range. However, it is hypothesized

for this model that the actual signal excess is randomly perturbed from

I the expected signal excess. Such perturbation is presumed to account

for the observed variations in detection performance. The solid line

in the figure depicts a possible actual signal excess distribution.

This method models the variation from the expected signal excess

in a particular manner. Let epochs of time ti, t2 , ... be selected

along the t axis by drawing from an exponential distribution with para-

rmeter X. At each time t. tiue difference in expected and actual is

|'presumed to change. The amount of the new difference is found by

drawing a value from the Normal distribution N(0, 2). This value is

superimposed (added to) the theoretical dotted line to obtain the solid

line. Detection is then said to occur whenever the solid line crosses

the threshold 6 and the result of the model is a binary decision as to

* whether detection occurs. To obtair. the prcbability of detection, the

whole process is repeated many times drawirg different time epochs,

and zJignal jumps, each time. The resulting number of detections, divided

by sample size, yields the probability of detection.
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Figure D-1. The X, A, a method for detection probability.
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We can now vary the parameters X, A, and a and obtain

different values for the probability of detection.

This whole process is repeated for a group of attempted

penetrations. Various tests - some quite complicated - have been

I proposed for determining the set of parameter (X, A, a) values

which provide the best fit.

it

'C

Ie
- 16
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3. The Instantaneous Detectioi. -ate Model

This model differs in one important aspect: a signal excess

over the threshold A does not imply that detection occurs. Rather

the significant factor is the time that each positive signal excess

Persists. This is accomplished in the following manner.

As shown in Figure D-Z, we again start with a "theoretical"

predicted signal excess curve, shown as a solid line in the

[figure. The signal excess, over a stated threshold, is indicated by

the vertical distance E(t). Since a positive value for E(t) no longer

implies instant detection, we calculate an instantaneous prcbability

of detection function, as follows.

Let us assume that at any constant level of E(t) the probability

I" of detection is the same in any interval of time from (t) to (t + At)

for small At. This is equivalent to assuming that the detection rate

j Fis Poisson distributed with a parameter X called the instantaneous

detection rate. The probability that no detections occur is

e-

In the more general case that X is a function of time, the probability

of nu detection in the period when the excess is positive is:

exp [- X (t) dt].
C )>0

The signal excess E)' and the instantaneous detection ratei (t) are closely related. We have hypothesized in this work that a

quadratic relationship is sufficiently accurage. A. linear relationship

was tried in Reference 1 and did not appear adequate.
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II Figure D-2. Signal Excess for the Instantaneous Detection Model
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Thus, let us dIefine the relationship:

2I(t) = A.E(t) + B-E (t)

where A and B are parameters. In figures 3 and 4 we illustrate

respectively the relation of Xk't) to E(t) and a sample X(t) curve

which might result from applying the , (t) cu n figure 3 to the

E(t) curve in figure 2.

The area under the curve in Figure 4 is ec I to X (t)dt. This

area is measured in decibel-minutes, abbreviated db. -min., and the

model is frequently referred to as the db, -min. model (read "dee-

bee-minutes model").

In the following sections, a method for estimating these para-

meters is given, and also (specifically for the linear case when

B = 0) a method for obtaining confidence intervals for these para-

meters is given.

In predicting the probability of detection for future ASW exer-

cises, these confidence intervals are used as follows. They provide,

in a sense, an idea of the "fuzziness" associated with detection model

parameters. The size of the intervals can be used to directly calculate,

not only the expected number of detections in a planned group of exer-

cises, but also the range of the number of detections (or, a lower limit

for the number), that would be reasonable taking into account the diffi-

culty in estimating environmental conditions, temperature gradients

of the water, etc.

These items are calculated directly rather than estimated

by means of repeated Monte Carlo runs. This produces a more
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Instantaneous
Detection Rate X (t)

(t A - E(t)+

I

Signal Excess F (t)

Figure D-3. Relation of Instantaneous Detection Rate to

Signal Excess

Instanta aeous
Detection Rate X (t)

area: .r x.(t) dt
SX Mt 0

Time t

Figure D-4. Instantaneous Detection Rate for the Instantaneous
Detection Rate Model
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i reliable and easily used model.

In addition, in the last section, there will be found methods

[ for testing goodness of fit of the models proposed here.

F

I-

|I
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I
4. Fitting the Instantaneous Detection Rate Model to Observed Data

I A certain amount of data has beeni collected on the distribution

of time to first detection in destroyer vs. submarine games. It is

conjectured that an instantaneous detection rate model may ade-

4quately explain the variation in times to first detection. A "brute-
ab

force" maximum likelihood method is described for obtaining estimates

of model parameters, and joint confidence regions. These estimates

would be used in estimating probabilities of detection in barrier (or

convoy screen) models, and in stating such probabilities with a

required degree of confidence.

In the following discussion we shall let S represent the transiting

submarine and D the destroyer or other sonar platform. Let us

assume that we have the following data.

(i) The positions of S and D at the start (beginning
of exercise)

(ii) The courses of S and D throughout the exercise

(iii) Time of first (valid, detection of S by D, if any.
If contact lost, timC3 of subsequent re-detections.

We assumne that, conditional on no detection by time t, the

probability of detection in the interval (t, t + dt) is \ (t) dt (the usual

instantaneous rate assumption). In fact, following the usual noise

propagation assumptions, suppose initially that

- max[0, (Ls(v) - LD(u) + NDI- NRD 1-k log r

F where

LD(U) '"self-noise" of Destroyer speed u

112-
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L(V) = radiated noise of Submarine at speed v

NDI = directivity factor

N RD "recognition differential" necessary to distinguish

[with probability 50%] the Submarine from back-

ground noise. [If the period of observation is

infinitely long. ]

r = distance between S and DJI
k = exponent of "noise law" (usually taken as 2)

(Conversion factors for db and loge have been omitted.)

We may conveniently write

X " function (v, u, DI, RD) - k log r (2)

In the following v will denote the velocity of S relative to D.

DS

._ r I V

D /e -A
! a

Figure D-5. Geometry of Approach Path

For approximate straight-line motion let A be the closest point of

approach. Then:

2 2 2 2
r =a +V t (3)

2 log r =log (az + v t ).
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I
i can thus be expressed directly in terms of time. And, in

fact, this expression (for a straight line segment of the relative course)

I can be integrated exactly over time. This procedure is described in

detail in another chapter in this (Chapter B).

Thus, provided in approximate motion on straight line segments,

we obtain an exact expression for

P(no detection) = exp [- j X (t) dr] (4)

P(detection occurs at t*) = X(t*) ez [- . )dt) dt]dt* (5)
t:)(t) > 0

11
° -.

.ii "
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5. Maximum Likelihood Estimators and Confidence Regions for (A, B)

Equation (4), or (5), with t = t*, represents the likelihood that

first detection occurs at t* in a particular trial. The likelihood can

be summed over t*'s, taken from different trials. For trials

[ where t = o (no detection occurred) the expression

exp [-f 1X(t) dt].(6

should be used.

We obtain an overall likelihood function

L(A, B; t-) = P(t* I A, B). (7)

*The values of A and B which maximize this expression can be found

by a steepest ascent procedure. Furthermore, using approximate

methods, we can determine a "confidence region" for A, B, namely

a region

C 9 5 %=(A, <A < B )  (8)

such that the mass of the likelihood function contained in C9 5% is

0. 95. These confidence bounds on A, B can then be used in com-

puting the overall probability of detection in a proposed scenario,

and of providing a lower confidence limit on the number of detections

out of 100 trials (say).

The foregoing procedure closely follows the methodology in the

reference [3 ], Singpurwalla. The fi.id of application in the latter

is reliability theory, but the same instantaneous detection rate function

applies, and the application is very similar.
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Alternatively, the following "standard" procedure may be

L sufficiently good, provided the total number of observatio -s is suffi-

ciently large. It is known (Kendall, p. 42) that maximum likelihood

estimators are asymptotically efficient. In our case the maximum

likelihood estimators for A and B are jointly normally distributed,

asymptotically, and the variances and covariance can be obtained by

taking the 2nd derivative of the log likelihood function. This can cer-

tainly be done analytically in our case, although the computation will

be somewhat tedious.

Thus we can use the Livariate Normal d.stribution and use stan-

dard tables to pick out our 95% confidence region for (A, B).

Even better, we can store the parameters -f this bivariate dis-.

tribution. Then, in any concrete situation, such as determining the

probability of detection when a submarine attempts to penetrate a

patrol barrier using some stated patrol strategy, we can proceed as

k follows.

We compute the probability of detection using an (approximate)

analytical formula, and assuming A and B known exactly. Then,

introduce the joint (asymptotic) distribution for A and B, and integrate

out A and B. This will be the maximum likelihood estimate of prob-

ability of detection. Next, assuming that A and B are present in the

probability of detection formula in some simple analytical form such as

A/B or kA 2 1/, we can obtain the distribution of this form and

obtain confidence limits directly on the probability of detection.

The question arises whether the quadratic "failure-rate" model

for M(t) is adequate to explain observed variations in first detection time.
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I The cumulative distribution function of t, time te first detection,

is given by

t
S1 exp X(t)dt.

The values of this function should, if our model is correct, be

random observations from the rectangular distributicn on [0, 1. The
Kolmogoroff test can be used to verify this.

However, we may consider our model "sufficiently good" if any

r" anomalies from this rectangular distribution are small, and no significant

improvement can be made on the fit by dividing the data in sub-classes

i (e. g. trials with a sea-state of 5 or lower; with an S-speed of 5-7 knots;

etc.).

In similar situations, Kolmogorov tests have been applied,

but heavy use has been made of Monte-Carlo simulation to provide

tests of significance. These tests, and significance levels, must be
I;calculated anew for each new situation.

In contrast, recent work by Lilliefors [2 1 indicates that more

general significance levels can be obtained in conjunction with the Chi-

squared test. His paper also suggests the optimal number of intervals

to use (at least six).

This paper does not deal specifically with truncated observations

of the type we encounter, but the following obvious modification suggests

itself.
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1./"
CPD /

/ I

/

Ud

0 P

Figure D-6. Value of GPD at which detection occurs (if at all)

First, all the predicted cumulative probability of detection func:ions

are normalized, as shown in the figure. In general, Pr (detection) will

increase up to an asymptotic value, denoted by Pd*

The observed value of the cumulative probability distribution

(CPD) at which detection occurs is denoted by p. If no detection occurs,

we arbitrarily draw the ;--2ie p from a uniform distribution on the

interval [Pd' 1 

Suppose that the recommended number of intervals is six. The
I

following figure illustrates the observed p's, in histogram form, from

I la series of runs (n in number).

i

F
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Frequency of observed p

I,

II

0- 1/6 216 3/6 4/6 5/6 1

Figure D-7. Hypothetical Frequency of Observed p.

The Chi-square test is then applied in the usual way, making

use of the significance levels supplied in Lilliefors' paper. Note, in

that paper, that appropriate attention is paid to the number of para-

meters of the "db-minutes" model which are estimated from the data.

As far as is known (from the available literature) no other

goodness-of-fit test currently in use, or proposed, for detection

models has this feature. In view of the small sample sizes experienced,

the importance of this feature is obvious.
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E. THE DISTRIBUTION OF THE TRANSIT POINT

IN A SUBMARINE VS. DESTROYER GAME

Preface

This chapter contains the text of an article submitted during the

p-oject to the Naval Logistics Research Quarterly. Since no decision

I has been reached on publishing it, it is included here in its entirety.

The subject of the paper, tne distribution of a submarine's transit

point, arose tangentially to the general r ;wudy of submarine-destroyer

encounters. He represents an abstract theoretical analysis of the pro-

bability distribution of the location of the midpoint cf the larger gap.

I In so far as this theoretical distribution approaches the actual distri-

bution occurring in practice, the results have several useful applications.

One which appears to require some attention on the part of the Navy is

to use sonobuoys or other silent sonar systems distributed in proportion
to the gap distribution. The objective would be to minimize the maxi-

ij mum probability of penetration anywhere along a screen or barrier.

The article follows.

Hi
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I THE DISTRIBUTION OF THE TRANSIT POINT IN A SUBMARINE

VS. DESTROYER GAME, SPLIT-THE-GAP STRATEGY.

IAlan J. Truelove

ATHEMATICA, Bethesda, Md.

Abstract

I Destroyers patrol randomly and independently along three
segments of a straight-line barrier. A submarine takes one,

and only one, look at their positions, and picks a transit point

by splitting the larger gap. What is the probability distribution

of this point ?

1.0' Introduction

Three destroyers patrol a line (stationary, in the barrier case;

I advancing with constant speed in the convoy escort case).

I2
- i1 I 3

-(6a+Zb) -(2a+2b) -2a 0 2a Za+2b 6a+Zb

Fig. 1: Patrol Segments, General Case

I The patrol segments are specified in Fig. 1 and are supposed of

- equal length, with equal gaps between adjacent segments.

( 1)Work performed under Contract N00014-70-C-0307, Office of

Naval Research. The author acknowledges helpful discussions with

Mr J, Randolph Simpson, ONR, and Mr Peter Perkins, TRW Systems.
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A suLmarine views the three destroyers instantaneously, and once

only, and determines their positions (but not their directions 6f motion).

The submarir; -hooses the larger of the two gaps and takes the mid-

I point M of the gap as his transit point. The purpose of this appendix is

to determine the distribution of this point M. The simpler, two -destroyer

case is solved also.

L 1.1 Comments on possible applications, and related work

ll (a) The theoretical distributions could be compared with

emrirical distributions of transit points (after suitable normalization,

to take account of different barrier dimensions). Unfortunately, the

latter distributions appear in classified publications.

(b) Suppose that the submarine crosses the barrier line a fixed

time T after it takes a look at the destroyers' position. This 'lag'

L T could be assumed sufficiently large so that the destroyer positions

at T would be independently distributed of their positions at time zero.

Alternatively, the new positions could be assumed correlated with the

_
ii  old positiohs, or some specific patrol pattern could be simulated

| during the lag T.

The probability of detection (destroyer on submarine), PD, could

then be calculated using cookie. cutter, or instantaneous probability

([Z], p. 506) methods.

(c) In a game theory situation, the destroyers could attempt

to improve PD by modifying the distribution of their position within

1 - 124-
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I the respective segments. Techniques which are appicable to this

K problem can be found in [1].

On the other side, the submarine could attempt to. lo:er PD

* by basing his choice of transit point on the specific positions of all

three destroyers, instead of just splitting the larger gap.

(d) We could elaborate the single-look assumption, by allowing

the submarine to acquire some information on destroyer positions when

[(if ever) he gets close enough to one or more of them, and allow some

modification of submarine course thereafter.

2.0 Assumptions

We assume the destroyers patrol randomly and independently in

their segments, and in such a way that(e.g.) destroyer l's position at an

Iarbitrary time is uniformly distributed in the segment (-(6a+Zb),-(Za+Zb)).
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~g(y)

:- t

1/4a

1/6a

I _ _ _ _y

b a+b Za+b 3a+b 4a+b

TV Fig. Z: g(y), p.d.f. for gap-split point, y
(3 destroyer case)

4.2 Two Destroyers

UIf only destroyers 2 and 3 are involved, we obtain.

Range for y p.d.f., g(y)

2
rb, 2a+b (y-b) /4a

L2a+b, 4a+b [4a-(y-b)] / 4a

g(y)

,.1
1/2a

b Za+b 4a'

SFig. 3 g(y), p.d.f. for gap-split point, y

(2 destroyer case)
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I
3. 0 Mathematical Statement of Problem

4=x.1, , 3 are independent random variables uniformly drawn from
i

I the ranges shown in Fig. 1.,

y is defined as the mean of x. x3 if x 3 x <x -x 1 otherwise

as the mean of x , #x ZI
4.0 Results

4.1 Three Destroyers

The p.d.f. for y, g(y), is continuous:

SRange for y p.d.f., g()

b, a+b 
(y-b) [3a-(y-b)] / 12a 3

a+b, 2a+b [(y-b)+a] / IZa

L (4.1) Za+b, 3a+b [7a-Z(y-b)] / 1ZaZ

2 3
L3a+b, 4a+b [(y-b)-4a] / i2a

Also, g'b) = g(4a+b) = 0

g(a+b) = 1/6a

g(Za+b) = l/4a

I g(3a+b) lil2a
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5.0 Analysis

5.1 Three Destroyers

i It is sufficient to consider the problem with "the gaps closed

up." A simple transformation, y - (y-b), with appropriate changes for

the range, then yields the result in Sec. 4.

"x 1  X 2  y x 3

Sh agthnyed h reul i ec 4.

~ 172A727 777777717

-0a -Za 0 Za 6a

Fig. 4: Simplified Situation

In the following work, assume that y falls in the right-hand side of

Ithe figure (i.e. y > 0). The resulting distribution will then be conditional

on this event, and, using symmetry, we can easily obtain the true p.d.f.

for y.

I To save excessive repetition of the factor (1/4a), take the p.d.f.'s

for the x. as 1, for the moment. The notation (,) is to be taken as
t 1

referring to the closed interval.

Fix y in (0,4a).

The'4llowable" range for x2 [i.e. , that for which there exists an

X 3 yielding the stated y! is obtained as follows.
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3 - x, (2a,6a)LI
3 i.e. x Z C (Zy - 6a, Zy - Za). ,Also, of course, x (-Za, 2a).

Now, for y to be the gap-split point, we must have

x > x - (Zy- X) 3x - Zy

Also, x (- 6 a, -2a).

The following figure indicates the "allowable" range for x I as a

function of x 2 , The position of the points A, D can change relative to

B .C. depending on the value of y originally fixed.

-Za

-6a

SB C D x

Z Zy - 6 a (Z/3)y -Za (Z/3)y- (2/3)a Zy- Za

Fi,. 5: Allowable Range for x
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[We have made use of the following:

6a , I (?,/3)y- Za
3x -2y =1[ implies x2 = /3)y- 

Still keeping y fixed, we now integrate over the per- xitted ranges

(dependent on y). Two types of integral arise, as shown:

(2/3) (y- 3 a)

(i) y c (2a,3a): 2 4a • dx - (16/3)a(3a-y)
2(y-

3 a)

y (O,Za) 4a • dx? =(8/3)ay

Za

7 (Z/3) (y-a)
(ii) y c (a,3a) : / (Zy-3Z-Za) dx, =(8/3)a

(2/3) (y-3a)

Z(y-a)

(O,a) (2/3) (y-3a) 2x-a) dx, =(8/3)y(2a-y)

(2/3) (y-a)

y c (3a,4a): / (Zy-3x -Za) dx, =(8/3)(y-4a)

Z(y-3a)

Performing the integration over y, we obtain

33
(5.1) a [8/3 + 16/3 + 16/3 + 16/9 + 8/9] = 16a 3

L I i I

xz  y y+dy x 3  x 3 +Zdy

Fig. 6: Allowable Increment for x 3
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Consideration of Fig. 6 shows the correct p.d.f. for x 5 is 2/4a = (1/Za);

the p.d.f. for x2 ,x3 (1/4a). We thus apply a factor (I/Za). (1/4a) 2 = (1/32a 3

I to (5.1), obtaining 1/2.. The other (1/2) of the p.d.f. for y occurs for

y (-4a,O).

Combining the expressions in (i),(ii), and introducing the factor

I (I/32a 3), we obtain the result in Sec. 4.

1 5.2 Two Destroyers

If destroyers 2 and 3 only are involved, the corresponding

k I integrals are

2 a < y < 4a: 2  I dx, = 8a- Zy
Zy - 6a

2 2 y - Za0 < y <_ 2a I Z dx 2 = 2y

-Za

The "correct" factor is (I/8a ), by an argvment similar to that in

5.1, and we obtain the result in Sec. 4.2.
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